
Deep reinforcement learning methods
Their advantages and shortcomings

Ashley Hill

CEA, LIST, LCSR

4th May 2020

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 1 / 97

Who am I?

Ashley Hill, PhD student at CEA Saclay, LIST, LCSR.

Currently working on reinforcement learning for predicting an optimal
control gain, in dynamic, uncertain, and noisy environment.

Co-author of the Stable-Baselines reinforcement learning library (details
later).

If you have any questions:

github@hill-a.me

ashley.hill@cea.fr

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 2 / 97

github@hill-a.me
ashley.hill@cea.fr

Before we begin...

If you have any questions during the presentations, or if I have not
explained things correctly, don’t hesitate to interrupt me to ask questions.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 3 / 97

Reinforcement learning

Contents

1 Reinforcement learning
Machine learning overview
History of deep learning
Reinforcement learning introduction

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 4 / 97

Reinforcement learning History of deep learning

A timeline of deep supervised learning and deep
reinforcement learning

1992

1994 1998 2010 2012

2013

2014

2015 2016 2017 2018 2019

1992: TD-gammon, one of the first NN RL methods

1994: LENET5, one of the first deep convolutional NN

1998: Start of AI winter

2010: End of AI winter, first GPU NN, DAN CIRESAN NET

2012: AlexNet, new high score on image net

2013: DQN, RL playing Atari

2014: Inception

2015: AlphaGo, first victory of an IA against an expert player at GO

2016: A2C & DDPG

2017: TRPO, PPO & HER

2018: TD3, SAC, & OpenAI five

2019: AlphaStar, solving a Rubik’s cube with one hand, & Deep mimic.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 5 / 97

Reinforcement learning History of deep learning

Machine learning overview

Dog

Steering

Figure 1: On the left self-supervised example. In the middle supervised example.
On the right reinforcement learning example.

ML type Signal size Example Tasks

Self-Supervised Input data Clustering

Supervised Output size Classification, regression

Reinforcement Learning Sparse scalar Control, planning

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 6 / 97

Reinforcement learning Reinforcement learning introduction

Reinforcement learning: Imitating real world learning

How do children/pets learn in real life?

Figure 2: A dog.

For a given stimuli, they act. From said action, feedback is given.
Ex: Hot stove with pain, miss behaving pet with owner, ...

Furthermore, it is model free learning!

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 7 / 97

Reinforcement learning Reinforcement learning introduction

Reinforcement learning loop

Agent

Environmentobservation
ot

reward
rt

action
at

rt+1

ot+1

at+1

Figure 3: Reinforcement learning feedback loop, some visual similarities with
control loops

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 8 / 97

Reinforcement learning Reinforcement learning introduction

Markov modeling of the problem

Many real world problems can be seen as a random process:

Card games (Black jack)

Random walk

Yahtzee

Where the random processes has possible states, with a probability of
transition from state to state.
A method to model these processes is the Markov models.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 9 / 97

Reinforcement learning Reinforcement learning introduction

Markov property

The Markov property:

Definition

Xn being the state at time n
xn being the value at time n

P(Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0) = P(Xn = xn|Xn−1 = xn−1)

Refers the memory less aspect of random processes.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 10 / 97

Reinforcement learning Reinforcement learning introduction

Markov chain

Example of Markov modeling when the system is autonomous:

Sunny Cloudy Raining

p = 0.9

p = 0.1

p = 0.8

p = 0.1

p = 0.1

p = 0.9

p = 0.1

Figure 4: An example of a Markov chain for weather.

Higher chance to stay in a state, cannot change from Sunny to Raining.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 11 / 97

Reinforcement learning Reinforcement learning introduction

Markov decision process

Extending the Markov chain for controlled systems, with actions and
rewards:

Cool Hot Overheated

Slow:
p = 0.5,
r = +1

Slow:
p = 0.5,
r = +1

Slow:
p = 1.0,
r = +1

Fast:
p = 0.5,
r = +2

Fast:
p = 0.5,
r = +2 Fast:

p = 1.0,
r = −10

Figure 5: An example of a Markov decision process for a racing car.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 12 / 97

Reinforcement learning Reinforcement learning introduction

Reinforcement learning loop

Agent

Environmentobservation
ot

reward
rt

action
at

rt+1

ot+1

at+1

Figure 6: Reinforcement learning feedback loop, some visual similarities with
control loops

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 13 / 97

Reinforcement learning Reinforcement learning introduction

Markov modeling from a control loop

Controller Robot

Observer

Errors Control input

MeasuresState

The observation in the control loop, are the states st .

The actions at , are the controller’s output.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 14 / 97

Reinforcement learning Reinforcement learning introduction

Reward function

The reward function is defined by an expert.
It returns a quality assessment of a given transition.
For example:

Racing car: rt = |yt | − |yt−1|
Robotic arm: rt = |dt | − |dt−1|

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 15 / 97

Reinforcement learning Reinforcement learning introduction

Objective function

From Sutton’s book1 (one of the best references for RL):

Definition

That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward).

The goal of reinforcement learning is to maximize the cumulative sum of
the reward.

Gt =
∞∑
k=0

rt+k+1

1Sutton, Barto, et al., Introduction to reinforcement learning.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 16 / 97

Reinforcement learning Reinforcement learning introduction

Return & discount

However, calculating the cumulative sum on a continuous task reveals a
problem: a diverging sum.

As such we add a new notion, the discount factor γ. Which gives us the
return, a exponential decay of the reward over time. Setting a γ less than
one, favors immediate reward:

Gt = rt+1 + γrt+2 + γ2rt+3 + ...

Gt =
∞∑
k=0

γk rt+k+1

The intuitive idea:

1000e now > 1000e in 1 year > 1000e in 100 years

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 17 / 97

Reinforcement learning Reinforcement learning introduction

Q-Value & Value function

How do we solve problems with this modeling.

100

Table 1: Classic labyrinth problem: Getting from the blue area to the red area.

A method to converge to the highest cumulative reward is needed...

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 18 / 97

Reinforcement learning Reinforcement learning introduction

Q-Value & Value function

In the case of reinforcement learning, ideally we want to maximize the
expected return.
The expected return for a given states is encoded as the Value function:

V (s) = E[Gt |st = s]

The expected return for a given states and action is encoded as the Q
value:

Q(s, a) = E[Gt |st = s, at = a]

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 19 / 97

Reinforcement learning Reinforcement learning introduction

Q-Value & Value function

Using a discount of 0.9, V (s) = E[
∑T−t−1

k=0 0.9k rt+k+1|st = s]

43 48 90 100

48 53 81

53 59 66 73

Table 2: Classic labyrinth problem: Getting from the blue area to the red area.

Rooms that are closer to the end, will have a higher V (s). Actions that
lead to the end for a given state, will have a higher Q(s, a).

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 20 / 97

Reinforcement learning Reinforcement learning introduction

Time difference – Bellman equation

Bellman optimization for V (s):

V (s) = E[Gt |st = s]

V (s) = E[rt+1 + γV (st+1)|st = s]

For Q(s, a) we get:

Q(s, a) = E[rt+1 + γmax
a′

Q(st+1, a
′)|st = s, at = a]

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 21 / 97

Deep Q network

Contents

1 Reinforcement learning

2 Deep Q network
Examples
Building the Deep Q network
Stabilizing the Deep Q network
Deep Q network (DQN) method

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 22 / 97

Deep Q network Examples

Labyrinth example

Table 3: Classic labyrinth problem: Getting from the blue area to the red area.

This is a discrete action, discrete state problem. It can be solved using
dynamic programming, or tabular Q-learning.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 23 / 97

Deep Q network Examples

Control example: mountain car

Figure 7: Mountain car: the reach the goal by building up inertia.

This is a discrete action, continuous state problem. It cannot be solved
using dynamic programming, or tabular Q-learning. For this, we would
need to either discretize the state space or use a approximate function for
estimating the value functions.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 24 / 97

Deep Q network Examples

Control example: mountain car

Figure 8: Mountain car: the reach the goal by building up inertia. the a0 action in
denoted in blue, the a1 action is denoted in red.

For example, the action a1 will lead to a higher V (s), as the reward is
higher when the car is near the goal.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 25 / 97

Deep Q network Examples

Function approximation

There exist many function approximations methods:

Linear

Polynomial

Neural Network

...

In the context of this class, we will focus on Neural Networks, as they are
able to estimate achieve a non-linear estimation of the Q-value.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 26 / 97

Deep Q network Building the Deep Q network

Neural network based Q-Value

Using a neural network as a universal function estimator 1 for the mapping
from the state space to each Q value for every discrete action:
(S 7→ Q(s, an), ∀an ∈ A)

s

Q(s, a0)

Q(s, a1)

Q(s, an)

...

Figure 9: Neural network based Q-value, architecture for discrete actions.

1Hornik, Stinchcombe, and White, “Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks”.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 27 / 97

Deep Q network Building the Deep Q network

The TD error

Q(s, a) = E[rt+1 + γmax
a′

Q(st+1, a
′)|st = s, at = a]

The TD-error is defined as such:

TDerr = E[rt+1 + γmax
a′

Q(st+1, a
′)− Q(st , at)|st = s, at = a]

It represent the error between the current Q-value, and the t + 1
approximation. From this:

Q(s, a) = Q(s, a) +αE[rt+1 + γmax
a′

Q(st+1, a
′)−Q(st , at)|st = s, at = a]

Where α is the learning rate.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 28 / 97

Deep Q network Building the Deep Q network

The loss function

With this, loss function is relatively simple, it is the mean squared error of
the TD-error over the states and actions:

L(θ) = Es,a∼ρ;s′∼Env

[(
r + γmax

a′
Q(s ′, a′; θ)− Q(s, a; θ)

)2
]

Where ρ is defined as the behavior distribution, in our case generated from
πε(s).

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 29 / 97

Deep Q network Building the Deep Q network

Exploration vs Exploitation

Figure 10: Mountain car: the reach the goal by building up inertia. the a0 action
in denoted in blue, the a1 action is denoted in red.

Now in this environment, the motor is not strong enough to go up the hill.
Using the highest Q-value (greedy Q value) will lead to a ”burn-in”, as no
exploration occur es and the Q-value is updated with the over-explored
regions.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 30 / 97

Deep Q network Building the Deep Q network

Exploration vs Exploitation

Figure 11: https://drive.google.com/file/d/1HIXdvY07VUSBFOANHRPJ-
UeEt6DoOOJE/view?usp=sharing

Explore too much, learn nothing of value. Exploit too much, ”burn-in”
bad policies.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 31 / 97

https://drive.google.com/file/d/1HIXdvY07VUSBFOANHRPJ-UeEt6DoOOJE/view?usp=sharing
https://drive.google.com/file/d/1HIXdvY07VUSBFOANHRPJ-UeEt6DoOOJE/view?usp=sharing

Deep Q network Building the Deep Q network

Exploration: Epsilon greedy

As with most reinforcement learning, the method needs to explore the
environment in order to learn the estimated Q-value.
For this, an ε-greedy policy can be used:

πε(s) =

{
π(s) ε < x

an, n ∼ U(0, |A|) ε ≥ x
, with x ∼ U(0, 1)

With often π(s) = argmaxa Q(s, a) for Q-learning.

This allows for some random exploration, while still exploiting with the
optimal policy. In practice, ε varies over time from 1.0 down to a lower
value, to explore early, and exploit later.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 32 / 97

Deep Q network Building the Deep Q network

Unstable however

Then putting this all together, and doesn’t work...
We have encountered what Sutton 2 calls The deadly triad:

Function approximation: Such as neural networks.

Bootstrapping: Update targets that include existing estimates (TD
methods do this)

Off-policy training: Due to the maxa′ Q(s, a′; θi) update value, not
being based on the target policy πε(s).

This is one of the reasons, the neural network over estimates the Q value,
and losses stability.

2Sutton, Barto, et al., Introduction to reinforcement learning.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 33 / 97

Deep Q network Building the Deep Q network

Unstable however: Deadly triad example

Figure 12: A Markov chain, demonstrating the Deadly triad. The reward is always
0. (image from the sutton’s book3)

for a linear value estimation vw (s) = w × s:

∆w ∝ (rt + γvw (st+1)− vw (st))∇wvw (st)

at s0:
∆w ∝ (γw2− w)

3Sutton, Barto, et al., Introduction to reinforcement learning.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 34 / 97

Deep Q network Stabilizing the Deep Q network

Stabilizing

Isolation from Off-policy would be complicated, however the two other
aspects of The deadly triad can be address using:

Experience replay: Update targets with past observations,
mitigating the Bootstrapping.

Fixed target Q network: Have 2 Q networks, one for the Q value,
the other for the target Q value, mitigating the Function
approximation.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 35 / 97

Deep Q network Stabilizing the Deep Q network

Experience replay

At each timestep t:

store the transition (st , at , rt , st+1) in D.

sample a random mini-batch of transition (sj , aj , rj , sj+1) from D.

calculate the gradient descent with
(rj + γmaxa′ Q(sj + 1, a′; θ)− Q(sj , aj ; θ))2 for the entire mini-batch.

back-propagate the mini-batch gradient.

This allows the method to ”relive” past transition at every timestep,
mitigating the issues related with Bootstrapping.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 36 / 97

Deep Q network Stabilizing the Deep Q network

Fixed target Q network

2 Q networks, Q and Qt .
For each timestep:

update the Q network

For every n timesteps:

Copy the weights from the Q network to the target Qt network

This allows for a consistent target Q value, lowering the variance, and
mitigating the issues related with Function approximation.

L(θ) = Es,a∼ρ;s′∼Env

[(
r + γmax

a′
Qt(s

′, a′; θ)− Q(s, a; θ)

)2
]

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 37 / 97

Deep Q network Deep Q network (DQN) method

Deep Q network (DQN) method

s

Q(s, a0)

Q(s, a1)

Q(s, an)

...

Figure 13: Neural network architecture of the DQN method.

L(θi) = Es,a∼ρ;s′∼Env

[
(r + γmaxa′ Q(s ′, a′; θi−1)− Q(s, a; θi))2

]
Experience replay (sample efficiency increase)

Fixed target Q network

ε-greedy exploration

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 38 / 97

Deep Q network Deep Q network (DQN) method

DQN success: Playing Atari games

Figure 14: The DQN architecture used in the DQN nature paper 4
(image from said paper).

Video: https://youtu.be/V1eYniJ0Rnk?t=18
Added features to play Atari games:

Frame stacking
Frame skipping
Preprocessing image
Convolutional neural network

4Mnih et al., “Playing Atari with Deep Reinforcement Learning”.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 39 / 97

https://youtu.be/V1eYniJ0Rnk?t=18

Deep Deterministic Policy Gradient

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient
Examples
Building the Deep Deterministic Policy Gradient
Exploring with Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient (DDPG) method

4 Advantage Actor Critic

5 Overview

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 40 / 97

Deep Deterministic Policy Gradient Examples

Control example: mountain car

Figure 15: Mountain car: the reach the goal by building up inertia.

This is a discrete action, continuous state problem. It cannot be solved
using dynamic programming, or tabular Q-learning. For this, we would
need to either discretize the state space or use a approximate function for
estimating the value functions.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 41 / 97

Deep Deterministic Policy Gradient Examples

Car example: continuous action

Figure 16: Car Racing: finish the lap in the fastest time, without leaving the track.

This is a continuous action, continuous state problem. It cannot be
solved using the DQN method. For this, we would need to either discretize
the action space or find the mapping from the state space to the action
space.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 42 / 97

Deep Deterministic Policy Gradient Building the Deep Deterministic Policy Gradient

Need function from state to action

Transitioning from discrete actions to continuous actions, means we can
no longer use the trick we used with DQN, as there are a quasi-infinite
number of actions possible.

Lets assume we have a neural network called the actor: µ(θµ) : S 7→ A. In
this case, the Q value can be a neural network we will call the critic:
Q(θQ) : s ∈ S , a ∈ A 7→ Q(s, a).

The loss function for the critic is similar to the DQN method:

L(θQ) = Es,a∼ρ;s′∼Env

[
(r + γQ(s ′, µ(s ′, θµ); θQ)− Q(s, a; θQ))2

]

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 43 / 97

Deep Deterministic Policy Gradient Building the Deep Deterministic Policy Gradient

A solution: Deterministic Policy Gradient

Deterministic policy gradient is depended on the Q-value from the critic
using the action from the actor, and defines:

∇θµL(θµ) = Es

[
∇θµQ(s, µ(s; θµ); θQ)

]
Intuitively, this implies the direction of gradient for Q is the direction of
gradient for θµ

The cause of this, is the critic must converge before the actor can
converge correctly.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 44 / 97

Deep Deterministic Policy Gradient Building the Deep Deterministic Policy Gradient

A solution: Deterministic Policy Gradient

Assuming the Q-value has converged:

Figure 17: Mountain car: the reach the goal by building up inertia. the a0 action
in denoted in blue, the a1 action is denoted in red.

∇θµL(θµ) = Es

[
∇θµQ(s, µ(s; θµ); θQ)

]
The gradient of the Q-value, is towards the goal. This means the equation
has as gradient the for the action, the direction of higher Q-values.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 45 / 97

Deep Deterministic Policy Gradient Building the Deep Deterministic Policy Gradient

Actor critic: sequential setup

Actor : S 7→ A Critic : s ∈ S , a ∈ A 7→ Q(s, a)

Actor

s
a

Critic
s

q(s, a)

Figure 18: The sequential actor critic neural network architecture.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 46 / 97

Deep Deterministic Policy Gradient Exploring with Deep Deterministic Policy Gradient

Exploration: random noise to action

Exploration is still needed due to the problem underlined with DQN.
However we cannot use the ε-greedy method for exploration.

As such, we sample noise from a Gaussian, and add it to the action:

π(s) = µ(s; θµ) + x , where x ∼ N (0, aσ)

Usually, aσ is initialized depending on the environment, and is slowly
reduced.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 47 / 97

Deep Deterministic Policy Gradient Exploring with Deep Deterministic Policy Gradient

Exploration: random noise policy network

An alternative to generate exploration, is to add the noise directly to the
weights and biases defined in θµ:

π(s) = µ(s; θµ + x), where x ∼ N (0, aσ)

As with the action noise, aσ is slowly reduced. This is environment
independent, and allows for exploration of the policy space without prior
knowledge of the action amplitudes.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 48 / 97

Deep Deterministic Policy Gradient Deep Deterministic Policy Gradient (DDPG) method

Deep Deterministic Policy Gradient (DDPG) method

Actor

s
a

Critic
s

q(s, a)

Figure 19: Neural network architecture of the DDPG method.

L(θQ) = Es,a∼ρ;s′∼Env

[
(r + γQt(s

′, µt(s
′, θµ); θQ)− Q(s, a; θQ))2

]
L(θµ) = Es [Qt(s, µ(s; θµ); θQ)]

Experience replay

Fixed target networks (actor and citic)

Action noise or Policy noise

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 49 / 97

Deep Deterministic Policy Gradient Deep Deterministic Policy Gradient (DDPG) method

DDPG success: MuJoCo

Figure 20: The HalfCheetah MuJoCo environment used in the DDPG paper5. The
angle of each segment is controlled by the reinforcement learning method directly.

Video: https://youtu.be/iFg5lcUzSYU?t=14

5Lillicrap et al., “Continuous control with deep reinforcement learning”.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 50 / 97

https://youtu.be/iFg5lcUzSYU?t=14

Advantage Actor Critic

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic
Off-policy, On-policy, policy gradient, and value function
Building the Advantages Actor Critic
Advantage Actor Critic (A2C) model

5 Overview

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 51 / 97

Advantage Actor Critic Off-policy, On-policy, policy gradient, and value function

Moving towards policy gradient methods

On-policy Off-policy

value function SARSA Q-learning, DQN

policy gradient A2C, PPO DDPG

Up until now, we have seen Off-policy methods, meaning our search policy
is distinct from our target policy.

However, we will be moving towards On-policy policy gradient methods.
Less sample efficient (no Experience replay), but are more stable (avoiding
the Deadly triad) and optimize the policy directly.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 52 / 97

Advantage Actor Critic Building the Advantages Actor Critic

How good is the action

We would like to find a indication of how good an action is in a given
state, to avoid penalizing an action in an overall bad state:

Figure 21: A bad state for the fox, but some actions are still better than others.
(from https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752)

A(s, a) = Q(s, a)− V (s)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 53 / 97

https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752

Advantage Actor Critic Building the Advantages Actor Critic

How good is the action

Figure 22: A bad state for the fox, but some actions are still better than others.
(from https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752)

Path A: Q(s, a) = −100, A(s, a) = (−100)− (−100) = 0

Path B: Q(s, a) = −150, A(s, a) = (−150)− (−100) = −50

Path C: Q(s, a) = −20, A(s, a) = (−20)− (−100) = 80

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 54 / 97

https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752

Advantage Actor Critic Building the Advantages Actor Critic

How good is the action: Advantage function

This notion of action quality for a given state is called the Advantage:

A(s, a) = Q(s, a)− V (s)

However, this means calculating the value function and the Q value, which
is inefficient. Luckily we can do this:

Q(s, a) = E [rt+1 + γV (st+1)| st = s, at = a]

A(s, a) = E [rt+1 + γV (st+1)− V (st)| st = s, at = a]

Advantage has some strong intuitive sense to it.
We can now use the advantage function to optimize the policy, in order to
more accurately target the wanted behavior (e.i take the action that
maximize return).

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 55 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Loss: Actor and Critic

Critic loss is identical to the previous methods (TD error):

Lc(θ) = Es,r ,s′∼ENV

[
(r + γv(s ′)− v(s))2

]
Actor loss is defined as the probability of taking the action, time the
advantage of said action:

La(θ) = Es,a [log(πθ(s, a))A(s, a)]

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 56 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Actor critic: parallel setup

Critic : s ∈ S 7→ V (s) Actor : S 7→ A

Actor

s
a

Critic

s
v(s)

Figure 23: The parallel actor critic neural network architecture.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 57 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Exploration: entropy loss

Using Shannon’s information entropy (H(x) = −
∑n

i=0 P(xi) log2(P(xi))):

The first graph has an entropy of H(x) = 0.922 bits

The second graph has an entropy of H(x) = 1.571 bits

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 58 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Exploration: entropy loss

The actor will converge too quickly, we need a loss function to go against
this. The entropy of the actor output will be used to keep the exploration
high.
Entropy:

H(X) = −
n∑

i=0

P(xi) log2(P(xi))

Entropy loss:

LH(θ) = Es,a

[
−
∑
i

πθ(s, a) log2(πθ(s, a))

]

Actor loss:
LaH(θ) = La(θ)− cHLH(θ)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 59 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Exploration: mean and variance

A good way to explore, is to let the actor defined the noise:

Actor

s σa

µa

Figure 24: The actor that outputs mean and standard deviation of the actions.

This lets the method become On-policy, while having a stochastic policy:

πθ(s) ∼ N (µa, σa)

And, when the method is not training, we can directly output the mean:

πθ(s) = µa

This is accomplished using a Softplus on the σ y = log(1 + exp(x)), and
entropy loss avoid a collapse to zero on σ.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 60 / 97

Advantage Actor Critic Building the Advantages Actor Critic

Workers

The gradient from the reward is noisy. As such, multiple agents can be
used to average the reward signal, and improve the gradient:

RL Method

Reward
Weights
Action

Worker 1 Worker 1 Worker N

Env 1 Env 2 Env N

This allows much faster convergence, as the cost of computational power.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 61 / 97

Advantage Actor Critic Advantage Actor Critic (A2C) model

Advantage Actor Critic (A2C) model

Actor

s σa

µa

Critic

s
v(s)

Figure 25: Neural network architecture of the A2C method6.

LaH(θ) = La(θ)− cHLH(θ)

Lc(θ) = Es,r ,s′∼ENV

[
(r + γv(s ′)− v(s))2

]
In practice: cH = 0.01, however this is tune able for a given task.

Workers

6Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning”.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 62 / 97

Advantage Actor Critic Advantage Actor Critic (A2C) model

REINFORCE success: AlphaGo Zero (with MCTS)

REINFORCE is used in AlphaGo Zero, the key difference with A2C is the
actor loss La(θ) = Es,a [− log(πθ(s, a))v(s)]

Figure 26: The training method for AlphaGo Zero from the paper7
(images from said

paper)

They also added self play and a Monte Carlo tree search to look ahead for
the best moves.

7Silver et al., “Mastering the game of go without human knowledge”.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 63 / 97

Overview

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview
Sample efficiency
Overview of seen methods
Common Pitfalls

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 64 / 97

Overview Sample efficiency

Sample efficiency

Sample efficiency is defined as the amount of samples required to reach a
decent policy. This is very context dependent, if the policy required is
complex enough, then Off-policy might struggle converging, making
On-policy methods better.

As an example, here is the a donkey car being trained in 7 minutes using
Soft Actor-Critic (SAC):

Figure 27: https://towardsdatascience.com/learning-to-drive-smoothly-in-
minutes-450a7cdb35f4, Video:
https://youtu.be/iiuKh0yDyKE

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 65 / 97

https://towardsdatascience.com/learning-to-drive-smoothly-in-minutes-450a7cdb35f4
https://towardsdatascience.com/learning-to-drive-smoothly-in-minutes-450a7cdb35f4
https://youtu.be/iiuKh0yDyKE

Overview Overview of seen methods

Classification of the models, pros and cons

tabular Q-learning DQN DDPG A2C

Off-policy 3 3 3 7

On-policy 7 7 7 3

Experience replay 7 3 3 7

Continuous states 7 3 3 3

Discrete actions 3 3 7 3

Continuous actions 7 7 3 3

Multi-process 7 7 7 3

Table 4: The characteristics of each method

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 66 / 97

Overview Overview of seen methods

Which one to use?

As with most things, it depends.

For robotics: Off-policy with Experience replay are a good idea, as they
are sample efficient.

For simulation, games, trading: On-policy for the stability and the fast
convergence to local optima.

You will need to test multiple reinforcement learning algorithms to verify
which one has the best performance.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 67 / 97

Overview Common Pitfalls

Reward shaping

Figure 28: https://youtu.be/tlOIHko8ySg

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 68 / 97

https://youtu.be/tlOIHko8ySg

Overview Common Pitfalls

Hyperparameter sensitivity

Running some reinforcement learning algorithms ”out of the box” might
not work and be unstable in the given environment. Reinforcement
learning is particularly sensitive to hyperparameters.

As such, it is best to setup your environment and model, with a grid
search or a hyperparameter search algorithm, such as Optuna
(https://optuna.org/).

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 69 / 97

https://optuna.org/

Conclusion

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview

6 Conclusion
Stable Baselines
TP
End of the presentation

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 70 / 97

Conclusion Stable Baselines

Stable baselines

Stable-baselines, is a reinforcement learning library that is designed to be user
friendly with an sklearn-like interface.
Initially a fork of Open AI Baselines, it is has been cleaned up to the pep8
standards, fully commented, fully documented, includes tests, includes CI,
includes major fixes, includes new algorithms (TD3 and SAC), and has been
battle hardened.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 71 / 97

Conclusion Stable Baselines

Stable baselines: fast prototyping

As with most python, just import it!

from stable_baselines import A2C

model = A2C(’MlpPolicy ’, ’CartPole -v1’).learn (10000)

The A2C model will train for 10000 timesteps, on the CartPole
environment, using a multi-layer perceptron policy.

You want to try images with DQN?

from stable_baselines.common.atari_wrappers import

make_atari

from stable_baselines import DQN

env = make_atari(’BreakoutNoFrameskip -v4’)

model = DQN(’CnnPolicy ’, env).learn (10000)

Done, training for an Atari game with frame stacking.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 72 / 97

Conclusion Stable Baselines

Stable baselines: Compare quickly

Figure 29: Tensorboard screenshot of 2 A2Cs training with different hyper
parameters, on cartpole.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 73 / 97

Conclusion Stable Baselines

Stable baselines: Understand the architecture

Figure 30: Tensorboard screenshot of the A2Cs tensor graph.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 74 / 97

Conclusion TP

TP

TP de prise en main Stable-baselines:
https://github.com/araffin/rl-tutorial-jnrr19

Dans le Readme section Content, ouvrez les liens ”Colab Notebook” pour
chaque notebook.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 75 / 97

https://github.com/araffin/rl-tutorial-jnrr19

Conclusion End of the presentation

Bibliography I

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. “Universal
approximation of an unknown mapping and its derivatives using
multilayer feedforward networks”. In: Neural Networks 3.5 (1990),
pp. 551 –560. issn: 0893-6080.

Lillicrap, Timothy P. et al. “Continuous control with deep reinforcement
learning”. In: CoRR abs/1509.02971 (2015). arXiv: 1509.02971. url:
http://arxiv.org/abs/1509.02971.

Mnih, Volodymyr et al. “Asynchronous Methods for Deep Reinforcement
Learning”. In: CoRR abs/1602.01783 (2016). arXiv: 1602.01783. url:
http://arxiv.org/abs/1602.01783.

Mnih, Volodymyr et al. “Playing Atari with Deep Reinforcement
Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url:
http://arxiv.org/abs/1312.5602.

OpenAI. OpenAI Five. https://blog.openai.com/openai-five/.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 76 / 97

https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://blog.openai.com/openai-five/

Conclusion End of the presentation

Bibliography II

Schulman, John et al. “Proximal Policy Optimization Algorithms”. In:
CoRR abs/1707.06347 (2017). arXiv: 1707.06347. url:
http://arxiv.org/abs/1707.06347.

Silver, David et al. “Mastering the game of go without human
knowledge”. In: nature 550.7676 (2017), pp. 354–359.

Sutton, Richard S, Andrew G Barto, et al. Introduction to reinforcement
learning. Vol. 2. 4. MIT press Cambridge, 1998.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 77 / 97

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Appendix

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview

6 Conclusion

7 Appendix

8 Neural networks

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 78 / 97

Appendix

OpenAI Gym interface

The stable baselines library, uses the OpenAI Gym interface. This interface
must have 4 functions:

init (*args, **kwargs): as with all python classes. Initializes an
instance of the environment.

reset(): resets the environment, returns the first observation

step(action): takes an action as an array, does one step in the
environment, and returns the observation, reward, is done, and info (a
dict)

render(type): takes a string of the type of rendering, and renders an
image of the environment.

and 2 variable:

observation space: The shape, size, and type of observation space.

action space: The shape, size, and type of action space.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 79 / 97

Appendix

Stable baselines: why was a fork needed?

fixed tf.session(). enter () being used, rather than sess = tf.session() and passing the session to the objects

fixed uneven scoping of TensorFlow Sessions throughout the code

fixed rolling vecwrapper to handle observations that are not only grayscale images

fixed deepq saving the environment when trying to save itself

fixed ValueError: Cannot take the length of Shape with unknown rank. in acktr, when running run atari.py script.

fixed calling baselines sequentially no longer creates graph conflicts

fixed mean on empty array warning with deepq

fixed kfac eigen decomposition not cast to float64, when the parameter use float64 is set to True

fixed Dataset data loader, not correctly resetting id position if shuffling is disabled

fixed EOFError when reading from connection in the worker in subproc vec env.py

fixed behavior clone weight loading and saving for GAIL

avoid taking root square of negative number in trpo mpi.py

fixed render function ignoring parameters when using wrapped environments

fixed numpy warning when using DDPG Memory

fixed DummyVecEnv not copying the observation array when stepping and resetting

fixed graphs issues, so models wont collide in names

fixed behavior clone weight loading for GAIL

fixed Tensorflow using all the GPU VRAM

fixed models so that they are all compatible with vectorized environments

fixed ‘set global seed‘ to update ‘gym.spaces‘’s random seed

fixed PPO1 and TRPO performance issues when learning identity function

fixed DQN wrapping for atari

fixed ACER buffer with constant values assuming n stack=4

fixed some RL algorithms not clipping the action to be in the action space, when using ‘gym.spaces.Box‘

removed unused, undocumented and crashing function reset task in subproc vec env.py

...

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 80 / 97

Appendix

Partially observable Markov decision process

s0

z0

π(z0) a0

r0

s1

z1

π(z1) a1

r1

s2 ...

Figure 31: A POMDP graph. In blue the observable information, in red the
hidden information, and in white the policy.

When a policy is applied to a POMDP, it is reduced to a hidden Markov
model.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 81 / 97

Appendix

Partially observable Markov decision process

There are multiple levels of POMDPs:

Temporal: The state can be reconstituted from the observation using
temporal information (eg: speed, acceleration, ...).

Hidden information: The observation lack variables needed to rebuild
the state (eg: terrain quality, temperature, ...).

Unknown external agent: (eg: poker, dota, ...)

POMDPs are not classified strictly, but are more a spectrum from most
observable to least observable.

Some of these can be mitigated with recurrent neural networks, frame
stacking, and a lot of training time. (OpenAI Five for example)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 82 / 97

Neural networks

Contents

1 Reinforcement learning

2 Deep Q network

3 Deep Deterministic Policy Gradient

4 Advantage Actor Critic

5 Overview

6 Conclusion

7 Appendix

8 Neural networks
Introduction
Perceptron
Multi Perceptron Network (MLP)
Policy Gradient issues
Building the Proximal Policy Optimization
Proximal Policy Optimization (PPO) model

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 83 / 97

Neural networks Introduction

Number recognition - MNIST

Figure 32: MNIST handwritten 9.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 84 / 97

Neural networks Introduction

Neural network

...

0
1
2
3
4
5
6
7
8
9

Figure 33: An example of a neural network for number recognition.

Map from input data to a desired output

O(N) complexity

Higher level representation for each layer.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 85 / 97

Neural networks Perceptron

Perceptron - Linear classifier

∑
+b

×w1

×w2

×wN

...
σ(z)

z s

x

y

Figure 34: An example of a perceptron and the sigmoid activation function.

s = σ

(
N∑
i=1

wixi + b

)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 86 / 97

Neural networks Perceptron

Perceptrons in a network

...

0
1
2
3
4
5
6
7
8
9

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 87 / 97

Neural networks Multi Perceptron Network (MLP)

Multi Perceptron Network (MLP)

s
(0)
0

s
(0)
1

s
(0)
2

s
(0)
3

s
(0)
4

s
(0)
5

s
(0)
6

s
(0)
7

s
(1)
0

s
(1)
1

s
(1)
2

s
(1)
3

s
(1)
4

s
(1)
5

s
(1)
5 = σ

(
w

(0,1)
5,0 s

(0)
0 + w

(0,1)
5,1 s

(0)
1 + · · ·+ w

(0,1)
5,7 s

(0)
7 + b

(1)
5

)

s

(1)
0

s
(1)
1
...

s
(1)
5

 = σ



w

(0,1)
0,0 w

(0,1)
0,1 . . . w

(0,1)
0,7

w
(0,1)
1,0 w

(0,1)
1,1 . . . w

(0,1)
1,7

...
...

. . .
...

w
(0,1)
5,0 w

(0,1)
5,1 . . . w

(0,1)
5,7



s

(0)
0

s
(0)
1
...

s
(0)
7

+


b

(1)
0

b
(1)
1
...

b
(1)
5




s(1) = σ
(
w (0,1) s(0) + b(1)

)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 88 / 97

Neural networks Multi Perceptron Network (MLP)

Multi Perceptron Network (MLP)

...

0
1
2
3
4
5
6
7
8
9

s(3) = σ
(
b(3) + w (2,3)σ

(
b(2) + w (1,2)σ

(
b(1) + w (0,1)x

)))

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 89 / 97

Neural networks Multi Perceptron Network (MLP)

MLP - Universal function approximator

x

s

x

s

x

s

x

s

Figure 35:

s = σ (wx + b)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 90 / 97

Neural networks Multi Perceptron Network (MLP)

MLP - Gradient descent optimization

s(3) = σ
(
b(3) + w (2,3)σ

(
b(2) + w (1,2)σ

(
b(1) + w (0,1)x

)))
Find the change in weights that minimize a cost function:

w (1,2) = w (1,2) + α
∂C

∂w (1,2)

Calculable with the chain rule (dérivation des fonctions composées):

∂C

∂w (1,2)
=

∂C

∂s(3)

∂s(3)

∂z(3)

∂z(3)

∂s(2)

∂s(2)

∂z(2)

∂z(2)

∂w (1,2)

∂C

∂w (1,2)
= C ′σ′(z(3))w (2,3)σ′(z(2))s(1)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 91 / 97

Neural networks Policy Gradient issues

A2C shortcomings

A2C is a good method, it does however have a few shortcomings:

Policy gradient can be large: Calculating the gradient for the
policy, can induce very large changes in the actor, causing the policy
behavior to change drastically.

Noisy Advantage function: Unfortunately, the advantage can be a
noisy signal, limiting the capacity of methods such as A2C

PPO addresses most of these short comings, though Policy gradient
clipping, and a better estimation of the Advantage function.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 92 / 97

Neural networks Building the Proximal Policy Optimization

Generalized Advantage Estimation

With δVt as the TD-error:

Â
(1)
t = δVt = −V (st) + rt+1 + γV (st+1)

This can be unrolled:

Â
(2)
t = δVt + γδVt+1 = −V (st) + rt+1 + γrt+2 + γ2V (st+1)

Â
(k)
t =

k−1∑
l=0

γ lδVt+l = −V (st)
k−1∑
l=0

γ l rt+1+l + γkV (st+k+1)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 93 / 97

Neural networks Building the Proximal Policy Optimization

Generalized Advantage Estimation

Taking a exponential weighted average of Â
(k)
t :

Â
GAE(γ,λ)
t = (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...

)
Â

GAE(γ,λ)
t = (1−λ)

(
δVt + λ(δVt + γδVt+1) + λ2(δVt + γδVt+1 + γ2δVt+2) + ...

)
Â

GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l

Â
GAE(γ,0)
t = δVt = rt+1 + γV (st+1)− V (st)

Â
GAE(γ,1)
t =

∞∑
l=0

γ lδVt+l

This allows for a more accurate estimation of the Advantage over time.

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 94 / 97

Neural networks Building the Proximal Policy Optimization

Clipping policy gradient

Actor loss:
La(θ) = Es,a [− log(πθ(s, a))A(s, a)]

Clipped actor loss:

Lclip(θ) = Es,a

[
− log(πθ(s, a)) min(τt(θ)Ât , clip(τt(θ), 1− ε, 1 + ε))

]
With τt(θ) denoting the probability ratio:

τt(θ) =
πθ(at , st)

πθold
(at , st)

Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 95 / 97

Neural networks Proximal Policy Optimization (PPO) model

Proximal Policy Optimization (PPO) model

Actor

s σa

µa

Critic

s
v(s)

Figure 36: Neural network architecture of the PPO method8.

L(θ) = Lclip(θ) + ccLc(θ)− cHLH(θ)

Generalized Advantage estimator GAE(λ)

8Schulman et al., “Proximal Policy Optimization Algorithms”.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 96 / 97

Neural networks Proximal Policy Optimization (PPO) model

PPO success: Dota

Figure 37: AI players from the OpenAI Five9 in Dota against humans. (image from the
reference)

Uses 128 000 CPUs and 256 GPUs, doing 900 years of gameplay/day
for 10 months.
Uses LSTM based recurrent neural networks.
Given a feature map of the visible area, and not an image.
simplified gameplay (no wards or summons).

9OpenAI, OpenAI Five.
Ashley Hill (CEA, LIST, LCSR) Deep reinforcement learning methods 4th May 2020 97 / 97

	Reinforcement learning
	Machine learning overview
	History of deep learning
	Reinforcement learning introduction

	Deep Q network
	Examples
	Building the Deep Q network
	Stabilizing the Deep Q network
	Deep Q network (DQN) method

	Deep Deterministic Policy Gradient
	Examples
	Building the Deep Deterministic Policy Gradient
	Exploring with Deep Deterministic Policy Gradient
	Deep Deterministic Policy Gradient (DDPG) method

	Advantage Actor Critic
	Off-policy, On-policy, policy gradient, and value function
	Building the Advantages Actor Critic
	Advantage Actor Critic (A2C) model

	Overview
	Sample efficiency
	Overview of seen methods
	Common Pitfalls

	Conclusion
	Stable Baselines
	TP
	End of the presentation

	References
	Appendix
	Neural networks
	Introduction
	Perceptron
	Multi Perceptron Network (MLP)
	Policy Gradient issues
	Building the Proximal Policy Optimization
	Proximal Policy Optimization (PPO) model

