
Université - Clermont-Ferrand

École Doctorale des Sciences Pour l’Ingénieur

CEA - LIST

LCSR

Adaptation du comportement sensori-moteur de
robots mobiles en milieux complexes

HILL Ashley

Soutenue publiquement le 24 Novembre 2022

Membres du jury:

Anne AUGER, Présidente, Ecole Polytechnique
David FILLIAT, Rapporteur, ENSTA Paris
Fäız BEN AMAR, Rapporteur, Sorbonne Université
Eric LUCET, Examinateur, CEA Saclay
Roland LENAIN, Directeur de thèse, INRAE Clermont-Ferrand

1

To my parents,
To my Fiancée Alizée

2

Abstract

This dissertation addresses the fullest possible adaptability of mobile robots following a path
in an off-road context. Indeed, this thesis was born from the need to continuously adapt the
behavior of a vehicle, according to variations in the quality of sensor perception and grip conditions.
Classically, this is achieved by using increasingly complex sensor and control systems. However,
this approach optimizes the sensor and control aspects independently, whereas in reality a strong
correlation exists between them, resulting in sub-optimal control strategies.

The modeling of the system and the design of the existing control laws and observers are first
described, which contribute to the closed-loop control of the robot. From this, a baseline of an
unmodified control system can be tested and validated both in real world and in simulation. In ad-
dition, this description highlights one deterministic approach to improving the online adaptability
of mobile robot path tracking.

A machine learning approach is then considered. This is a reinforcement learning approach with
episodic policy iterations using an evolutionary strategy, that is used to train a neural network.
The machine learning training is then exploited to improve the existing control laws by taking into
account additional inputs such as sensor accuracy and grip conditions, whose effective contribution
is evaluated.

Different methods of using the neural network are considered. A complete replacement of the
steering control law is proposed. An alternative approach of online adjustment of the steering
control parameters allows the original robust control law to be preserved while using additional
information.

These methods are tested in simulation and in real-life conditions, as well as a deterministic
model based control parameter tuning approach. This analysis reveals the specific strengths and
weaknesses of each approach, with respect to the baseline methods. Further analysis are also
performed using a feature importance method developed during the thesis, which allow some
insights into the behavior of the neural network.

It is observed that an augmentation of the steering control system alone is sub-optimal. A
second approach of using a neural network for both steering and speed control is then designed
and compared. for this approach, more care is needed in order to develop the appropriate objective
function to achieve suitable trade-offs, due to the characteristics of the Pareto front for this multi-
objective optimization approach.

Overall, the machine learning hybrid control approaches developed in this thesis have been
tested through real world experiments in highly dynamic off-road environments, with varying
grip conditions and sensor accuracy. The resulting findings show that these methods are able to
outperform existing controllers in both highly varying and constant environments, demonstrating
that the proposed method is capable of adapting the robot’s behavior in a strong manner, relative
to its observed state.

Keywords: Wheeled mobile robots, off-road robotics, path tracking, adaptive control, non-
linear control, machine learning, reinforcement learning, neural networks, evolutionary strategies,
gain tuning, dynamic simulator, optimization, Pareto front, feature importance.

3

Résumé

Cette thèse s’intéresse à l’adaptabilité la plus complète possible des robots mobiles suivant une
trajectoire dans un contexte hors route. En effet, cette thèse est née de la nécessité d’adapter
continuellement le comportement d’un véhicule, en fonction des variations de la qualité de percep-
tion des capteurs et des conditions d’adhérence. Classiquement, ceci est réalisé en utilisant des
systèmes de capteurs et de contrôle de plus en plus complexes. Cependant, cette approche optimise
les aspects capteurs et contrôle de manière indépendante, alors qu’en réalité une forte corrélation
existe entre eux, résultant en des stratégies de contrôle sous-optimales.

La modélisation du système et la conception des lois de commande et des observateurs existants
sont d’abord décrites, ce qui contribue à la commande en boucle fermée du robot. À partir de là,
une base de référence d’un système de contrôle non modifié peut être testée et validée à la fois
dans le monde réel et en simulation. En outre, cette description met en évidence une approche
déterministe pour améliorer l’adaptabilité en ligne du suivi de trajectoire des robots mobiles.

Une approche par apprentissage est ensuite envisagée. Il s’agit d’une approche d’apprentissage
par renforcement avec des itérations épisodiques de la politique à l’aide d’une stratégie évolutionnaire,
qui est utilisée pour former un réseau de neurones. L’apprentissage est ensuite exploité pour
améliorer les lois de commande existantes en prenant en compte des données supplémentaires
telles que la précision des capteurs et les conditions d’adhérence, dont la contribution effective est
évaluée.

Différentes méthodes d’utilisation du réseau de neurones sont envisagées. Un remplacement
complet de la loi de contrôle de l’angle de braquage est proposé. Une approche alternative
d’ajustement en ligne des paramètres de contrôle de la direction permet de préserver la loi de
contrôle robuste tout en utilisant les informations supplémentaires.

Ces méthodes et une méthode de réglage des paramètres de contrôle basée sur un modèle
déterministe sont testées en simulation et en conditions réelles. Cette analyse révèle les forces et
faiblesses spécifiques de chaque approche, par rapport aux méthodes de base. D’autres analyses
sont également effectuées en utilisant une méthode d’importance des entrées du réseau de neurones
développée au cours de la thèse, ce qui permet de mieux comprendre le comportement du réseau
de neurones.

Il est constaté qu’une amélioration du système de contrôle de la direction seule est sous-optimale.
Une deuxième approche consistant à utiliser un réseau de neurones pour le contrôle de la direction
et de la vitesse simultanément est alors conçue et comparée. Pour cette approche, une plus grande
attention est nécessaire afin de concevoir la fonction objectif appropriée pour obtenir les compromis
adéquats, en raison des caractéristiques du front de Pareto pour cette approche d’optimisation
multi-objectifs.

Dans l’ensemble, les approches de contrôle hybride par apprentissage développées dans cette
thèse ont été testées par des expériences réelles dans des environnements hors route hautement
dynamiques, avec des conditions d’adhérence et une précision des capteurs variables. Les résultats
montrent que ces méthodes sont capables de surpasser les contrôleurs existants dans des environ-
nements à la fois très variables et constants, démontrant que la méthode proposée est capable
d’adapter le comportement du robot de manière importante, par rapport à son état observé.

Motclés: Robots mobiles à roues, robotique tout-terrain, suivi de trajectoire, commande adap-
tative, commande non linéaire, apprentissage, apprentissage par renforcement, réseaux de neurones,
stratégies évolutionnaires, réglage de gain, simulateur dynamique, optimisation, front de Pareto,
importance des entrées.

5

Thanks

This thesis is the results of the cumulative works over 3 years at the French Alternative Energies
and Atomic Energy Commission (CEA) in Saclay, with many back and fourths to the National
Research Institute for Agriculture Food and Environment (INRAE) in Clermont-Ferrand. As such,
I would like to thank these institutes for their warm welcome, and for the means they gave me to
lead to work to fruition.

My sincearest thanks to Anne Auger, for accepting to be the president of the jury for my thesis,
along with David Filliat and Fäız Ben Amar for being my rapporteur de thèse. Their guidance
and advice over the PhD was invaluable while working on this subject.

I wish to wholeheartedly thank Roland Lenain, who was my PhD director. He showed inspiring
passion for science, rigor, was very patient while stopping me running headfirst, and was very kind.
Most importantly he knew how to formalize my ideas, inspirations, and showed me how to get to
when I needed to go. I look forward working with him again, watching my Neural networks running
and then threatening to throw themselves into a ditch, along with a nice quack for good measure.

I would like show my deepest gratitudes to Eric Lucet, my PhD advisor. He saw me at my
best, encouraging me forward, and he saw me at my worst, knowing exactly what to say to get me
going again. His Foresight and intuition are awe-inspiring. I hope to keep brainstorming and to
bounce ideas off him, to push scientific subjects further.

To the Dr Hamelin, Dr Bretel, Dr Martins, and Dr Martin, I thank them for giving me their
time and advice on how to finish a PhD while remaining (somewhat) sane, and I thank them for
showing me that I was not alone in my struggles. And I hope the next time I meet them, it can
count as a symposium. Drinks on me.

To everyone who read parts of my thesis (you know who you are), I thank you for the invaluable
time and advice that allowed the thesis to be as clean as it is here. Without them this document
would not be in a readable and coherent state.

To my fiancée Alizée, I cannot express the gratitude I owe her. she saw me from the start to
the end, and showed me when I was metaphorically (and sometimes literally) banging my head
against a wall, that I had not reconsidered my initial hypothesis, leading me to bring many of my
ideas to fruition.

I would like to sincerely thank my parents, my sisters, and my family, for helping me become
the person I am today, teaching me things I will never forget, for encouraging me to do what I
love, and to have helped me to finish this work.

I would also like to thank Jeff (The Guardsman), Pierre (le papillon), Dimity (l’oraculaire),
Jordan (Le Firner), Pierre-Louis (Le Fisc), and my other friends for their good spirits and their
help to blow off some steam around some games, hopefully I wont lose too badly next time.

I wish to thank the Factory-IA cluster, for simulating 800’000km and 6.5 years per experiment
over 24 hours, totaling over 800’000’000km (5.3 Au) and 650 years, which is the equivalent of going
from the sun to Jupiter over the same time-span as from the middle ages to today. Without it, I
do believe my laptop would have caught fire... And I would like to thank Robufast & Adap2e for
their discipline, consistency, and for 30GB of data over 18 days of experiments. I promise (or I
will try to) not throw them in a ditch by accident because I loaded the wrong tyre model for the
neural network (dont ask)

Finally, I want to thank specifically John Tatman, Vanessa Tatman, my fiancée Alizée, My
sisters Claire & Louise, Jeffrey Hannan, Thibault Hamelin, Tolentino Martins, and Lucie Martins
during some dark times near the end of the thesis. Thank you for keeping the lights on.

7

I do not know what I may appear to the world, but to myself I seem to
have been only like a boy playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.

Sir Isaac Newton

[They] offered to give us our future. [We] will achieve [our] own future.
Technology is not a straight line. There are many paths to the same end.
Accepting another’s path blinds you to alternatives.

Legion, ME2

8

Table 0.1: Notation used throughout the dissertation

Robotics:
(D) The trajectory followed by the robot.
s The curvilinear abscissa along (D).
L The wheel base length of the robot.
v The amplitude of the speed vector of the robot.
Px, Py The x, y position in a global reference frame.
θ The robot’s heading.

θ̃ The angular error.
y The lateral error.
c(s) The curvature at the curvilinear abscissa s.
δF The state of the front steering angle.
δR The state of the rear steering angle.
g The gravitational constant (defined here as g = 9.81).
a The longitudinal robot acceleration amplitude.
G The center of gravity of the robot.
LF , LR The front and rear wheelbase of the robot respectively.
FF , FR The front and rear lateral wheel force respectively.
β The robot’s sliding angle.
βF , βR The robot’s front and rear sliding angles respectively.
Iz The moment of inertia across the Z axis.
v2 The longitudinal component of the speed vector of the robot.

θ̈ The angular acceleration across the Z axis of the robot.

θ̇ & ω The angular speed across the Z axis of the robot.
m The mass of the robot.
CF , CR The cornering stiffness of the front and rear wheels of the robot respectively.
uδF & δctrl,F The control input of the front steering angle.
τs The time constant to convergence.
Kp The proportional control gain.
Kd The derivative control gain.
H The control horizon lookahead (in seconds).
∆t The time between two measurements.
∆s The distance along the curvilinear abscissa between two measurements.
dt The differential change over time.
x̂ The predicted state vector.
f() The system’s model.
x The state vector.
u The control vector.
Fk The Jacobian matrix of the robot’s model.
C The Kalman filter’s covariance matrix.

x̂
′

The estimated state vector.

K
′

The Kalman gain.
Hk The Jacobian matrix of the observation model.
zk The measurements used for the Kalman filter.
Q The covariance matrix of the robot’s model.
R The covariance matrix of the measurements.
Kpos The sliding angle observer gain over the position.
Kβ The sliding angle observer gain over the sliding angle.
A The matrix of the system’s state model.
B The matrix of the system’s control model.
kdd The double derivative gain (used for EBSF).
ξ The damping factor of the control system.
τδ The steering actuator response time.
Dy The settling distance for the convergence of the lateral error.
Ty The settling time for the convergence of the lateral error.
Tω The settling time for the convergence of the angular velocity.
π The ratio between the diameter and the perimeter of a circle.
N The constant between two values for Shannon’s sampling theory.

9

Machine learning:
π() The policy function.
X The state vector.
s The observed state.
a The action vector.
r The reward.
V () The value function.
Q() The Q-value function.
T The total time of an episode.
P The population sampled for an optimizer.
N The normal distribution function.
µ The mean of a Gaussian distribution.
σ The standard deviation of a Gaussian distribution.
C The covariance matrix of CMA-ES.
I The identity matrix.
Npop The population size of CMA-ES.
Gt The optimization target for reinforcement learning.
Overall:

N The total number of samples in an episode (where T =
∑N

k=0 dt).
sN The total length of a trajectory.
objerr The sub-objective function that describes the lateral error.
objsteer The sub-objective function that describes the steering error.
objspeed The sub-objective function that describes the speed penalty.
ky The objective function lateral error gain.
ksteer The objective function steering error gain.
kspeed The objective function speed gain.
γ The objective function linear scalarization coefficient.
obj1 The first objective function used in section 4 and section 5.
obj1,speed The objective function used in section 6.1.
obj2 The second objective function used in section 6.1.
obj3 The third objective function used in section 6.
Aerror The surface error described in m2.
Aover The surface error outside the allowed corridor, described in m2.
v̄ The average speed over the episode.
Cxy The x, y position accuracy, as described by the Kalman covariance matrix.
Pacejka sliding model: (only in section 2.3)

Fy The lateral wheel force.
Fz The vertical force applied to the wheels.
α The sliding angle (in degrees).
B,C,D,E The Pacejka parameters.
a1, . . . , a8 The Pacejka parameters.
Romea controller: (only in section 2.5)

a1, a2, a3 The state variables, representing the curvilinear abscissa, the lateral error, and
the angular error respectively.

m1,m2,m3 The control variables, representing the speed, front steering, and a new control
variable relying on the steering angle respectively.

EBSF controller: (only in section 2.5)
U The control input vector.
y0 The immediate error state vector.
A & B The matrices of the system linearized predicted states (Y = Ay0 +BU).
Y The predicted error state vectors.
D The block diagonal matrix that contains the dimensions of the robot represented

as a rectangle.
dgap The vector of the gap size that the constraint must respect.
Q & R The block diagonal gain matrices with elements γk

QQ and γk
RR respectively.

S The discretization step over the curvilinear abscissa.
n The number of steps chosen to define the prediction horizon.

Contents

Contents 11

1 Introduction 15
1.1 Towards intelligent systems . 15

Is it possible to define intelligence? . 15
Neurons and uses for intelligent systems . 16
Artificial Intelligence and Robotics, from fiction to reality 16
Some historical perspectives regarding Artificial intelligence 17
Limitations of Control theory and AI applied to robotic control 18

1.2 Methods for adapting the control in complex environments using machine learning 19
The context of the thesis . 19
Research axis . 19
Implications of machine learning . 20
Applying deep reinforcement learning to mobile robotics 21

2 Vehicle Modeling and control 23
2.1 General features about modeling . 23
2.2 Kinematic Model . 23
2.3 Dynamic model . 24

Improving the Kinematic model . 24
Tyre slip model . 26
Actuators delays . 27

2.4 Extended kinematic model . 27
2.5 Deterministic steering control . 28

Adaptive control law from a chained system [Romea] 28
predictive control law from constraint optimization [EBSF] 29
Tuning control laws parameters . 30

2.6 Extended Kalman filter . 31
2.7 Observers . 32

Sliding angles observer . 32
Cornering stiffness observer . 33

2.8 Simulated implementation of the models and controllers 33

3 Reinforcement learning approach to robotic control 37
3.1 Overview of the machine learning methods . 37

Self-supervised learning . 37
Supervised learning . 37
Reinforcement learning . 37
A Markov modeling for robotic control . 38

3.2 Time difference reinforcement learning . 39
Value function . 39
Action policy . 39
Existing methods . 40
Limitations . 41

3.3 Transition to episodic . 42
3.4 Gradient-free Direct policy search . 43

11

12 CONTENTS

An alternative to time difference . 43
Moving from reward to objective function . 43
Optimizers for episodic reinforcement learning . 44

3.5 CMA-ES based training in simulation . 46
3.6 Neural network architecture . 46
3.7 Reinforcement learning strategy selection . 47

4 Applying reinforcement learning for robotic steer control 49
4.1 Direct steer control using Reinforcement learning [NN controller] 49

Experimental setup . 49
Simulated results . 51
Feature importance . 54
Analysis of the approach . 55

4.2 Corrective steer control [Delta NN ctrl] . 55
Experimental setup . 56
Simulated results . 57
Feature importance . 59
Analysis of the approach . 60

4.3 Online control parameter tuning for existing steer controller [NN gain tuner] . . 60
Control parameter tuning . 61
Experimental setup . 63
Simulated results . 64
Feature importance . 67
Validation of the results over test trajectories . 68
Analysis of the approach . 69

5 Gain tuning in dynamic context 71
5.1 Model-based gain tuning [Model gain tuner] . 71

System response time . 71
Settling time for the robots yaw rate . 72
Gain adaptation . 72
Experimental setup . 73
Metrics . 73
Simulated results . 73
Analysis of the approach . 76

5.2 Control parameter tuning using dynamic parameters [Full NN gain tuner] . . . 77
Experimental setup . 77
Simulated results . 78
Qualitative Analysis . 79
Feature importance . 83
Validation of the results over test trajectories . 84
Analysis of the approach . 84

5.3 Real world experiments . 86
The RobuFast robotic platform . 86
Experimental Setup . 86
Trajectory 1 . 87
Trajectory 2 . 88
Conclusion . 89

6 Simultaneous steer and speed control 91
6.1 The problem shift due to additional speed control 91

Pareto Front . 92
New Objective function . 94

6.2 Experimental setup . 95
Control loop setup . 95
Metrics . 96
Training details . 97

6.3 Simulated results . 97

CONTENTS 13

Quantitative Analysis . 97
Qualitative Analysis . 99
Feature importance . 101
Validation of the results over test trajectories . 103
Analysis of the approach . 104

6.4 Real world experiments . 105
Experimental setup . 105
Real world results . 106
Analysis of the results . 108

7 Conclusion and Future works 109
7.1 Conclusions . 109
7.2 Future works & perspectives . 111

Tuning the model based gain tuner . 111
Improving the observations . 111
Alternate architecture for integrating the neural network 111
Improving the simulation for additional dynamics 112
Predicting the settling time with a neural network, for agnostic controller gain tuning112
Gain tuning: going further than controllers . 112
Speed control applied independently to each wheel 112
Transformer applied to robotic control . 113
Custom Neural network architecture . 113
Improving the optimizer . 113

7.3 Overview of the work . 113

Bibliography 115

List of Figures 121

A Appendices 127
A.1 TD Reinforcement Learning: Function derivation 127

Optimization target: Gt . 127
Value function: V (s) . 127
Q-value: Q(s, a) . 128

A.2 Comparing optimizer algorithms for mobile robot steering 129
BSR: Basic Random search . 129
CEM: Cross-Entropy Method . 129
An empirical test: Comparing with CMA-ES . 130

A.3 CMA-ES analysis . 133
covariance exploration . 133
CMA-ES variants . 133
CMA-ES limitations for real world experimentation 135

A.4 New feature importance method . 137
Feature importance . 137
Temporal permutation . 137
Novel gradient base approach . 137
Deriving linear approximations . 138
Deriving N-order Taylor approximations . 138
Gradient base feature importance of experimental results 139

A.5 NN controller and Delta NN ctrl with dynamic parameters 141
A.6 Training method variance test: Full NN gain tuner case study 143
A.7 Gain synthesis using CMA-ES in dynamic simulation 145

Experimental setup . 145
Results . 146
Limitations . 149

A.8 Real world trials with dynamic parameters . 151
Trials with the Pacejka tyre model for training . 151

A.9 Online speed and control parameter tuning up to 6m/s, with linear objective function155

14 CONTENTS

Overview of the experiment . 155
Trajectory 1 . 155
Trajectory 2 . 159
Testing a pure machine learning controller . 161
Conclusion of supplementary experiments . 162

A.10 Simulator implementation and tools . 165
Trajectory format . 166
Tools for analysis . 166

A.11 Society’s feelings and expectations regarding artificial intelligences and robotics . . 169
A.12 Description of elementary trajectories for training and testing 171

Training set . 171
Testing set . 171

Chapter 1

Introduction

The subject of interest considered here is the autonomous navigation of a wheeled mobile robot in
off-road environment. To this end, the methodology investigated is to complete classical control
theory using the latest developments in machine learning.

This work is the result of a collaboration between the CEA and INRAE research institutes. It
was initiated and co-supervised by the CEA while the INRAE provided the direction for the PhD.
These works took place in the two laboratories:

• The LCSR which is part of the DRT/LIST/DIASI/SRI in the CEA Saclay, specialized in
research for the control of robots in industrial applications.

• The TSCF which is part of the INRAE Clermont, which is specialized in research for the
control of mobile robots in an agricultural context.

The following work have been achieved in part using with Factory-IA in CEA Nano-INNOV at
Palaiseau, and real world off-road tests took place in INRAE’s dedicated site at Montoldre.

1.1 Towards intelligent systems

To begin with, the concepts of AIs and machine learning are introduced, before specifying the use
case of said methods over the research axis that are considered.

Is it possible to define intelligence?

Figure 1.1: XKCD’s
spin on Turing tests.

One of the hardest questions that are yet to be fully answered, is ”What is
intelligence?” and the companion question ”How can one quantify intelli-
gence?”. Indeed these two questions are large, complex, and very subjec-
tive, that have plagued many minds. Yet it can be known when observed, in
a ”I know it when I see it” fashion, without any clear concepts to attribute
to these kinds of answers, which implies that intelligence is a concept with
no hard boundaries (this feature of intelligence is what Alan Turing ex-
ploits for his famous Turing test [1], where a human is asked to guess if a
system is a human or a machine).

Over the years, many attempts to quantify intelligence have been ex-
plored, including IQ (intelligence quotient) tests [2], but these tests have
shown to not be a useful indicator of intellectual capabilities [3], and are
often an indication of competence in a very narrow subset of intelligence.
Finding an objective method for quantifying intelligence seems intractable

for the fields of philosophy, neuroscience, and social sciences.

15

16 CHAPTER 1. INTRODUCTION

However, it is not necessary to attempt to quantify what is intelligence, and to simply define
what is intelligence. In computer science and AI research, a common definition exists:

”An intelligent system is a system capable of maximizing a desired objective within a given
environment.”

However this definition is not as useful as it seems. On the surface this definition seems valid,
as it takes into account human intelligence, but also animal intelligence, and advance artificial
intelligences such as Alpha-Go [4]. Unfortunately, it is also quite large and includes simple or-
ganisms such as amoeba and viruses as being intelligent even tough they lack a central nervous
system needed for abstract reasoning and planning. As such, it might be more useful to develop
an intuition of intelligence for the reader, rather than trying to define or quantify it, by taking
example on Alan Turing’s Turing test.

Neurons and uses for intelligent systems

Figure 1.2: A dia-
gram of a neuron.

In nature, there are many examples of intelligent systems. Indeed, if we
consider humans to be intelligent, an example of an intelligent system can
be the human central nervous system. A nervous system is composed of
neurons with axons (used to connect neurons between each other) as shown
in figure 1.2. Individually, these neurons are not inherently intelligent.
Indeed, their behavior is rather simple: they activate their axon if the
axons are connected to the neurons, signal above the threshold of the
neuron. A few neurons connected can allow for simple sense-action loops,
which are the basis for some microscopic creatures (for example if sensing
enough food on the left, then move towards the left). Neurons take a whole
new form when combining in large networks, due to the emergent behavior
of the neurons together allowing for a higher level of intelligence, often
associated with central nervous systems seen in larger animals. Indeed, this
emergent intelligence is capable of long and short term planning, problem
solving, and abstract reasoning, which are features that are not present within the basic neuron
building block.

These qualities are often necessary in computer sciences and in particular in robotics, as they
would allow for complex automation without the need for human interference, or for assistance in
high level reasoning tasks. Modern prominent examples of these are self driving cars. As such,
most of the desire for intelligent systems, is one that could be used and be useful in the real world.
For that, it needs to approach human level of intelligence.

Artificial Intelligence and Robotics, from fiction to reality

Figure 1.3: Marvin
the paranoid robot
(”The Hitchhiker’s
guide to the galaxy”)

However, it is important to remind the high limitations of today’s AIs.
Indeed, reasoning akin to humans is expected, whereas only specialized
intelligences have been developed in a real world context, as described by
Yann Le Cun for the 2019 Turing award, in NYU’s Mar 27, 2019 news
release, where he predicts a revolution from specialized AIs to general AIs
that approach human intelligence. And furthermore, the reasoning mech-
anism of an advanced artificial general intelligence (AGI) would probably
be alien when compared to how humans reason due to the span of possible
intelligences. Considering some works of fiction as simple thought experi-
ments, some parallels with the current state of AI’s can be observed that
are concerning. For example, in the case where an AI is considered as fully
competent as an AGI. Such as Nick Bostrom’s thought experiment: ”The
paperclip maximizer”, where an AGI is tasked with collecting as many
paperclips as possible, and will try and get paperclips regardless of con-
sequence to humanity or the world at large (which exemplifies the danger
of oversimplified objective functions). Or more recently with specialized
AI’s that have dangerous edge cases, such as Tesla’s & Uber’s self driving
car accidents, amazon’s sexist recruitment tool, Microsoft’s AI TAY which

1.1. TOWARDS INTELLIGENT SYSTEMS 17

when exposed to the internet quickly developed extremist points of view, or the French Chat-
bot that would suggests suicide (from AINews, October 28th 2020). Most of these issues can be
narrowed down to alignment problems[5, 6], and reward gaming1. As such, some concern should
always be given when working with AI’s, as the decision taken might not be logical or in line with
all the principles that conceivably exist in human morality or what could be considered useful. Be
it intentional for ill formed General intelligent systems, or unintentional for ill-trained specialized
intelligences that could not grasp those concepts in a trivial manner.

Some historical perspectives regarding Artificial intelligence

The overall field of artificial intelligence can be dated back to 1940 with the first operational modern
computer ”Heath Robinson”, and the foundational paper [1], both by Alan Turing. From these,
the tools for creating intelligent system in theory and practice emerged as we know them today.

However the field of artificial intelligence is quite large, and spans expert systems, exploration
& optimization algorithms, and machine learning. A brief overview of which can be seen in the

AI

Machine Learning (ML)
Linear regression,

Polynomial regression,
SVM, Neural networks, ...

Expert Systems
Logic proposition,

Inference, SAT solvers, ...

Exploration &
Optimization

Chess AI, A*, ...

Figure 1.4: From Artificial Intelligence: A Modern Approach [7].

figure 1.4. The first class of methods are the expert systems, which suffer from combinatory
problems and definition issues when applied to controlling a robot, as there is often a continuous
output to be controlled, and the rules that govern that output are often complex and/or opaque.
This means that expert systems will be discounted as a viable solution in the thesis. The second
class of methods are searching methods, similar to optimization algorithms or Chess AIs (e.g.
alpha-beta decision tree search, A* search, ...). At first these could be considered a viable solution
and indeed they are used in many cases (MDP controller, LQR control, ...). However they are often
computationally expensive, and might not be able to solve some classes of problems (meaning some
highly non linear and modal problems), due to the difficulty of efficiently searching the problem
space. As such searching methods are also discounted as a viable solution in the thesis. The
final class of methods are called machine learning methods (ML), which are methods that exploit
computational statistics in order to generate ”learned” models using some input data. They can
be as simple as a regression algorithm, but in modern research it is more common to use deep
artificial neural networks that are trained in a specific task [7, 8, 9].

An artificial neural network (NN), is a universal function approximator [10] that imitates the
structure of neurons an synapses in brains. They were first suggested by Walter Pitts and Warren
McCulloch in 1943 [11]. Marvin Minsky in 1951 then created the first single layer neural network
called SNARC [12]. Then, after a few ”AI-winters”, Hopfield and Tank in 1985 realized that
multilayer NN could solve optimization problems [13], with the back propagation algorithm being
demonstrated in 1986 [14] (which is still widely used today), this laid the theoretical foundations for
modern machine learning, which then continually expanded. Then in 2001, a large boom occurred
with NN, as large datasets and improved computational power allowed for shifts in paradigm from
focusing on the algorithm to focusing on the data. This in turn lead to first GPU accelerated

1A large collection of example can be seen here https://tinyurl.com/56mh38b3

https://tinyurl.com/56mh38b3

18 CHAPTER 1. INTRODUCTION

NN called DAN CIRESAN NET [15], and then followed by AlexNet [16] scoring a new high score
on image net, showing the potential of deep neural network architecture using GPUs in the early
2010’s.

In the 1950s, the field of Reinforcement learning (RL) was also emerging from machine learning
and control theory with Richard Bellman’s work on dynamic programming approaches to design
a controller that would minimize a measure of a system’s behavior over time [17]. From this and
from the works with neural networks lead to TD-gammon [18] in 1992. It was developed as the
first neural network based method for reinforcement learning. Using the basis of TD-gammon and
the developments in GPU accelerated deep neural networks, the DQN method was developed [19]
that could play classic Atari games at human levels. Which lead to the methods such as AlphaGo
[4], the first victory of an IA against an expert player at GO, and being able to solve a Rubik’s
cube with one hand as output and a camera as input [20].

AI applied to mobile robots

Figure 1.5: The car
ALVINN used.

When observing the works done on AI’s applied to mobile robotic control,
much has been developed as early as 1988 with the ALVINN method [21]
(shown in figure 1.5), that used a neural network to steer a car at 1.5km/h
(due to computational constraints) in a supervised method. Followed by
STANLEY [22] and BOSS [23] which both are self driving cars developed
for the DARPA challenge, and both use classic control for the steering
and speed, but use unsupervised and supervised machine learning for the
computer vision and detection algorithms 2. More modern approaches
try and integrate neural networks for steering similarly to ALVINN, such
as NVIDIA’s end-to-end supervised driving [24] method using the camera
input to steer the vehicle. Or using reinforcement learning approaches such
as [25] which uses A3C [26] RL method to steer car, but this method is significantly below the
supervised learning method, which imitates an expert. And also a Q-learning [19] approach [27]
using discrete steering states, unfortunately it leads to oscillatory steering. And more recently
the works on GT Sophy [28] where fundamental Markov issues have been addressed for training
reinforcement learning methods with mobile robots.

Additional works have also been developed to improve the transferability of the method from
the simulation where it is trained, so that its behavior remains consistent in real world conditions.
Methods such as Sim-to-Real [29] by NVIDIA, or Intel’s method for changing the simulated im-
ages to resemble reality [30]. As a results, end-to-end methods for autonomous driving are still
ambitious.

Limitations of Control theory and AI applied to robotic control

When observing the limitations of control theory and AIs when applied to robotic control, an
interesting paradox appears. For control theory, the key difficulties are adapting to the environment
and autonomy, due to the complexity of the system’s model that is needed in order to correctly
adapt to the changes in the environment in an optimal manner. Where as, AI based robotic control
struggles with robustness and predictability in its behavior, while often being able to adapt well to
unseen conditions. From this, it seems that a hybridization of AIs and Control theory might lead
to a more complete control scheme, one where a control law is able to exploit a known model for
accurate control, all while the entire observation of the environment is taken into account by an
AI, which can influence the control law in order to adapt to situation that would be unexpected
when using the control law’s simplified model.

2The use of AIs for detection and computer vision in robotics is a common theme, as it allows for safe con-
trollability while allowing for intelligent detection, as such this approach is potentially sub-optimal from a control
perspective.

1.2. METHODS FOR ADAPTING THE CONTROL IN COMPLEX ENVIRONMENTS
USING MACHINE LEARNING 19

1.2 Methods for adapting the control in complex environments using
machine learning

The previous considerations tends to show that a high level of complementarity between deter-
ministic approaches and machine learning techniques may open the way to new and efficient
approaches. This is the subject of the proposed thesis, which may be formulated as follows:

Methods for adapting a control algorithm in complex environments using ma-
chine learning

Indeed this thesis was initiated in order to adapt the behavior of a mobile robot to variation in
the perception quality and the variations of tire-ground interactions and the grip conditions, which
would be difficult to achieve using control theory alone. However, adding AI’s to a control law is
not a singular task, and in reality is a continuous control spectrum, from full deterministic control
law to full independent AI. As both extremes are sub optimal (as discussed previously and also
verified in the following), there might exist a Goldilocks trade-off3 between the amount of control
the AI and the control law have (and in which way) which could lead to a more adaptive control
scheme than a single control law, while avoiding the limitation of the AI methods. This trade-off is
what this thesis wants to explore and verify in order to determine whether such a hybrid method
is indeed the best approach for mobile robotic control.

The context of the thesis

Advances in control and perception for mobile robotics have allowed the dissemination of mobile
robotics for well known and well defined tasks. Be it in an indoor context such as production lines
[31, 32], or in an outdoor context (autonomous mechanical weeding [33]), the mobile robots of today
are capable of addressing specific, but restricted use cases in dynamic contexts. Indeed, most of
the algorithms used today are designed to works with multiple sources of sensory information. As
such, the absence of information or the use of noisy signals, renders a control law designed for a
known precision less efficient. Even though many works exist for determining the quality of the
perception [34, 35], the impact of said quality on the robotic behavior still remains underused,
bringing the robot to halt, or to take improper movements.

In order to be able to exploit robotics in different evolving contexts and increase their autonomy,
it seems then necessary to be able to adapt the behavior of the robot according to the perception
quality as well as the varying motion parameters (velocity, grip conditions), which influence the
robot dynamics. Indeed, in the presence of accurate localization information and known grip
conditions, it would be sufficient for example to use adaptive and predictive controllers, allowing
for a more accurate movement at higher speeds, despite the presence of dynamic phenomena.
However, such approaches cannot be considered if the localization accuracy is degraded. In real
world situation, such degradations in perception quality are common, due to a loss of GPS signal
for example. These degradations bring then to a misinterpretation of the dynamics of the robot
by the observation algorithms, leading to a source of potential instability. In addition, the tuning
of control parameters depends on perception noise, and a set of control parameters may be stable
with very accurate sensors and good grip conditions, but unstable when high noise or poor grip
conditions are encountered.

Research axis

The subject of this thesis proposes the development of methods that allow the robot to consider
the varying observations and the quality of perception. This should allow the adaption of the
robot’s performance to the perception, in order to preserve the stability and robustness of the
robot. For this, the thesis will address the integration of the perception, as such as to adapt the
control methods, their parameters, or certain control targets (forward speed, lateral distance to the
trajectory, or others). The control modalities will be based on existing works, and their adaptation
will be the first aspect of the thesis.

3Term derived from the fairy tail Goldilocks, where the titular character desired a balance that is ”just right”,
not too ”hot” and not too ”cold”.

20 CHAPTER 1. INTRODUCTION

The expected results, in the context of this subject, will be focused on the algorithmic adapta-
tion mechanism. Demonstrating them in real world conditions will allow assessing the pertinence
of the developments. These scenarios will be focused on the applications aimed for the agricultural
domain, by considering the evolution of the off-road outdoor environment. The advances obtained
during this thesis will allow robots to evolve as fast as possible, while guarantying a high level of
precision and robustness, and consequently, safety aspects.

The integration of the varying observations and the quality of perception is a non trivial task.
It would require significant changes to the modeling and controllers of used on the robots. These
modifications are non ideal as they would be dependent on the robot and on the controller. Ideally,
a method for automatically and correctly integrating the varying observations and the quality of
perception into the control system could be considered. For this the field of machine learning could
be leveraged in order to bridge the gap and reach an adaption of the robot’s performance to the
perception, in order to preserve the stability and robustness.

Implications of machine learning

When considering how to integrate machine learning methods, we must first distinguish what we
wish to affect. Indeed most of the field of machine learning is based on outputting a value, that
is based on the given input. The inputs are relatively easy to define, they are simply the varying
observations and the quality of perception described previously. For the output however, it is not
clear which element to affect; we can however draw a gradient from a pure classic control system,
to a pure machine learning control system.

This can be interpreted as 4 levels of integration of machine learning in robotic control: The
first and simplest, replace the controller with a machine learning method. The second, applying a
corrective term to the existing controller using a machine learning method. The third, adjust the
behavior of the controller through control parameters using a machine learning method. And the
fourth, the trivial case of not using any machine learning.

Replacing the controller

Classically in machine learning applied to robotic control, when a control task is considered too
complex for a control law, to directly control the robot using a machine learning method, such as
the first self driving car using a neural network, called ALVINN [21]. Or for complex grasping or
walking tasks [36].

Correcting control output

Considered an iterative improvement over replace an existing controller, is to correct the output of
the controller, through the machine learning method. This allows a best of both worlds approach,
where the machine learning method is capable of fully controlling the robot, but does not need
to unless the controller has a sub-optimal behavior relative to an interior criterion of the machine
learning method. In which case the machine learning method will correct the output in order to
preserver the behavior that is desired.

These methods however can be difficult to implement, as they often depend on the machine
learning method predicting and modeling on some level the behavior of the control law, in order
to predict the control law and appropriately correct the control value.

Controller gains

Integrating the quality of perception and the perception into a control law is not a simple task, as
it can be relatively hard to qualify how a controller should react to the perception information in
full detail. Usually, controllers are tuned for a given environmental state, and this tuning encodes
the unmodeled aspects of the controller. However, the quality of the perception changes this
environmental state. An example of this would be GPS noise, as a higher GPS noise means the
controller should reduce its settling time to the positional errors, as they are not as reliable. This
tuning is defined as the gains of a controller.

The controller gains are values that define the reactivity of the controller to specific parame-
ters. They are defined as the control effort relative to the error, in terms of time or distance to

1.2. METHODS FOR ADAPTING THE CONTROL IN COMPLEX ENVIRONMENTS
USING MACHINE LEARNING 21

convergence. They are usually set so the controller is critically damped, and so that the controller
will quickly converge to the set point, but not overshoot too much or oscillate.

With this, an ideal gains value would then tune the controller to obtain a fast convergence to
the set point, a non-oscillatory control, and to minimize the control errors overall.

Using a machine learning method, we could consider adjusting these predefined values in real
time, in order to adapt the behavior of the robot to the environment.

Applying deep reinforcement learning to mobile robotics

The hypothesis we wish to prove is that a machine learning approach to control a mobile robot
will be able to adapt its behavior in real time, as a function of the environment and the immediate
state of the robot.

As such, the methods derived from machine learning will be compared over many trajectories
and environment, in order to determine if the methods have been able to adapt the behavior of
the robot, where existing controllers have not be able to do so. And to distinguish which method
is the most appropriate for the use case tested in the thesis, which is mobile robots in an off road
context.

From these works, an initial paper titled ”Neuroevolution with CMA-ES for Real-time Gain
Tuning of a Car-like Robot Controller” was published showing the promising results of these
methods for gain tuning in simulation during the ICINCO 2019 conference, followed by a paper
titled ”Online gain setting method for path tracking using CMA-ES: Application to off-road mo-
bile robot control” was published showing the success of the previous methods for gain tuning
in real world conditions during the IROS 2020 conference. In order to analyze the results of
these methods, an additional paper titled ”A Novel Gradient Feature Importance Method for
Neural Networks: An Application to Controller Gain Tuning for Mobile Robots” was published
demonstrating a method for analyzing the influencing inputs of a neural network using a gra-
dient approach during the ICINCO 2020 conference; of which it was extended with an in-depth
analysis of the methods previously shown for the LNEE journal. During the PhD an internship
was achieved in order to determine if tuning the speed instead of the control gains was a viable
research path to explore, the results of which lead to the paper titled ”Online velocity fluctuation
of off-road wheeled mobile robots: A reinforcement learning approach” shown in the ICRA 2021
conference. And finally, a paper titled ”On the online tuning of control parameters for off-road
mobile robots: Novel deterministic & neural network based approaches” where the model gain tuner
and the dynamic parameters are taken into account for gain tuning at 4m.s−1 were developed
for the RAM journal which was accepted, which also lead to a presentation of the works during
the ICRA 2022 conference as a guest. Overall a total of 4 conference papers, 2 journal papers,
and 1 patent where developed during the PhD, along with two more journal paper to be submitted.

This thesis manuscript is structured as follows: First, a summary of robotic control, robot
modeling, and the simulation built for training the method is described in order to clarify the
notions used throughout the thesis. Next, a state of the art of deep reinforcement learning for
robotic control is described, in order to show which method is the most appropriate for this task,
and to explain how these methods can be used for adapting the behavior of the robot. This is
followed by a comparison of the existing controllers with the machine learning steering method, the
machine learning corrective steering method, and the machine learning gain tuning method. This is
then compared against a new model based gain tuning method and tested with dynamic parameters
as additional inputs. Then, a hybrid speed and steering control is proposed, in order to adapt the
full behavior of the robot to the environment. In conclusion, the key aspects discovered along
the way for the machine learning methods are outlined, and also the current existing limitations
that could be pushed even further in order to improve certain aspects of the thesis if addressed in
future works. Throughout the thesis, additional literature will be referenced as needed, in order
to introduce key notions as needed, and to streamline the flow.

Chapter 2

Vehicle Modeling and control

Classically, the navigation for autonomous vehicles is determine using a control law, which assures
the correction of the tracking errors from the referenced trajectory. Among all the possible solutions
to this, here we have chosen to present in particular two model predictive control law (MPC), along
with their kinematic model they are based on. The dynamic model presented is used for simulation
purposes, in order to generate a training environment that is realistic enough, as well as for the
derivation of an observer for adapting grip conditions. Furthermore, this dynamic model will be
used to define the Model gain tuner described further on, and in order to help define the observer
needed in the future sections.

2.1 General features about modeling

The design of control laws for mobile robot autonomous navigation basically relies on the use on
a model allowing to characterize the robot motion with respect to control variables [37, 38]. In
the framework of this thesis, and without loss of genericity, the control of car-like mobile robot is
considered in an off-road environment, acting at relatively high speed. As a result, the classical
use of pure kinematic model [39], relying on rolling without sliding assumption cannot be applied
in this context, since many disturbing phenomenon cannot be neglected, such as effect of bad grip
conditions and dynamical phenomenon. As a result, more complex modeling must be handled to
account for such effect in order to derive an accurate control, despite facing such perturbations.

2.2 Kinematic Model

Assumption and notations

The first level of modeling considered for mobile robot control in this work, consists in considering
only the speed vectors, and ignoring the more complex dynamic behavior of the robot. This
simplification assumes no sliding dynamic between the wheels and the ground.

The Ackermann-type front-steering vehicle is modeled in the yaw plane as a bicycle
[39], the front and rear axles being modeled by a single wheel, and the steering angle as an
equivalent angle. A model of the kinematics of this system may be sufficient depending on the
context; the more complex dynamic behavior of the robot is then neglected. In this case, the
assumptions of rolling without longitudinal and lateral slippage are applied. Using such an as-
sumption, and considering that all wheels stay in contact with the ground, one can represent
mobile robot motion such as on the figure 2.1

In this representation, the middle of the rear axle is used as the reference point, the position
of which, has to be controlled. In the framework of path tracking problem, the robot state is
defined with respect to a desired trajectory (D), to be followed by this reference point. In order
to compute the motion model, we use the following notations:

• (D) is the trajectory followed by the robot, represented as a geometric curve.

• s is the curvilinear abscissa along (D), at the closest point belonging to the reference trajec-
tory from the robot reference point.

23

24 CHAPTER 2. VEHICLE MODELING AND CONTROL

(D)

θ̃

δF

L

y

v

1
c(s)

(Px, Py)

Figure 2.1: The cinematic robot model.

• L is the wheel base length of the robot.

• v is the speed vector of the robot at the middle of the rear axle.

• Px, Py is the position of the midpoint of the rear axle in a global reference frame.

• θ is the robot’s heading, in a global reference frame.

• θ̃ is the angular error, defined as the angular difference between the robot’s heading and the
tangential angle at the nearest point along the curvilinear abscissa of the trajectory.

• y is the lateral error, defined as the distance of the rear axle to the nearest point along the
curvilinear abscissa of the trajectory.

• c(s) is the curvature of the point of curvilinear abscissa s on the trajectory.

• δF is the front steering angle.

• a is the robot longitudinal acceleration.

With the assumption of no lateral movement of the wheels, the speed vector orientations are
given by the front and rear wheels directions. Under this assumption and considering there is no
instantaneous change in the speed, the following system of equations can be derived as (see [40]
for details):

Ṗx = v cos(θ)

Ṗy = v sin(θ)

θ̇ = v tan(δF)
L

(2.1)

When in the Frenet frame projection, this model can be rewritten as follows:
ṡ = v cos(θ̃)

1−c(s) y

ẏ = v sin(θ̃)

˙̃
θ = v

[
tan(δF)

L − c(s) cos(θ̃)
1−c(s) y

] (2.2)

One can note that this model has a singularity at y = 1
c(s) (the robot is situated at the center of

the reference path curvature), however this is unlikely to happen, due the how large 1
c(s) is, with

respect to y.

2.3 Dynamic model

Improving the Kinematic model

In order to account for bad grip conditions, one can consider a second layer of modeling, based
on dynamical model. Since it has a great interest in automotive industry, many works have been

2.3. DYNAMIC MODEL 25

achieved on the study of car dynamics (sec [41]). In the framework of autonomous navigation,
many approaches using dynamical model keep the bicycle representation, in order to reduce the
number of parameters to be known [42]. Since this work aims at considering the development
of IA approaches to autonomously tune the control parameters of a deterministic control law, a
dynamical model is here exploited to observe and simulate the robot behavior. For this reason, we
consider the simplest dynamical model (with as less parameters as possible) shown in [43], here
applied to a single steering axle.

In this representation the longitudinal position of the center of gravity has to be known, as
well as the robot mass m and the moment of inertia Iz along the vertical axis. The motion is
supposed to be achieved on a flat ground, avoiding the consideration of a bank angle. Moreover,
since we consider that the velocity is changing slowly, the longitudinal motion is not considered.
As a result the contact forces acting at the tire ground patch are considered to be only oriented
along a perpendicular axis with respect to tire’s directions

Using these assumptions, the description of robot motion can be described as depicted on the
figure 2.2:

(D)

G

θ̃

δF

L
LR

LF

(Px, Py)
βR

βF

βFR

FF

y

v

1
c(s)

Figure 2.2: The dynamic robot model.

Similarly to the kinematic model, the rear axle midpoint is used as the reference for the speed,
lateral error, angular error, and position measurement. Notations are defined as follows:

• G is the center of mass of the robot.

• LR and LF are the distance from the center of mass to the rear and front axle respectively.

• FR and FF are the lateral force on the rear and front axle respectively.

• β is the vehicle sliding angle.

• βF and βR are the front and rear axle sliding angle respectively.

• Iz is the moment of inertia across the Z axis (here meaning away from the ground).

• v2 is the longitudinal component of the speed vector v.

In this point of view, the robot is supposed to move at an almost constant speed. From this
modeling, the following system of equations can be derived:

θ̈ = 1
Iz

(−LFFF cos(δF) + LRFR)

β̇ = − 1
v2m

(FF cos(β − δF) + FR cos(β))− θ̇

βR = arctan(tanβ − LRθ̇
v2 cos(β))

βF = arctan(tanβ + LF θ̇
v2 cos(β))− δF

v2 = v cos(βR)
cos(β)

(2.3)

26 CHAPTER 2. VEHICLE MODELING AND CONTROL

Tyre slip model

In order to model the lateral forces FF and FR applied to the dynamic model, a tyre slip model
must be used. A tyre slip model, is a modeling of the tyre dynamic that predicts the lateral forces
applied to the wheels, based on the systems current state. A trivial example of this is a linear
approximation of the lateral forces FF , FR with respect to the tyre slip angles βF , βR{

FF = CFβF

FR = CRβR
(2.4)

where CF and CR are the front and rear cornering stiffnesses respectively. A higher CF , CR implies
a stronger force while cornering, which implies better grip conditions. This modeling is not optimal
however in many cases, due to a lack of saturation of the lateral forces which occurs when the sliding
angles are high enough (this is due to the lateral force matching or exceeding the maximal friction
force of the tyre), this situation of force saturation often occurs in an off-road context, which is
the context studied in our case [44].

As such, we need to consider a better modeling of the tyre’s lateral forces. For this, many
modeling methods exist, such as TMEASY [45] and LuGre [46] (for a more in depth look of tyre
slip models, refer to [47]). For our use case, the famous Pacejka tyre slip model [48] was initially
chosen, due to its modeling accuracy, low number of parameters, and modeling of the desired force
saturation.

From the Pacejka tyre model, the force equation Fy is described as:

Fy = D sin(C arctan(Bϕ))

ϕ = (1− E)α+ E
B arctan(Bα)

D = a1F
2
z + a2Fz

B = a3 sin(a4 arctan(a5Fz))
CD

E = a6F
2
z + a7Fz + a8

(2.5)

Where a1 to a8, and C describe the properties of the tyre and the ground. Fz is the vertical force
applied to tyre and β is the tyre side slip angle.

40 20 0 20 40
Sliding angle - [deg]

8000

6000

4000

2000

0

2000

4000

6000

8000

La
te

ra
l t

yr
e

fo
rc

e
- [

N
]

FF

FR

Linear region

Figure 2.3: The Pacejka model’s lateral force curve, using a Fz = 1.055kN, with respect to the
tyre slip angle.

An example of the results of this equation is visible on the figure 2.3. One can notice that this
model is non linear, despite a pseudo linear part for low sideslip angles (within ±5◦) corresponding
to the previous linear model (2.4). This so-called pseudo-sliding part is often used for autonomous
vehicle control moving at low speed in urban environment. Above this part, the lateral forces
tend to saturate after having reached a maximum value. In such areas, sliding is effective and the
assumption of pure rolling without sliding for the wheel (used to obtain the model (2.1)) is no
longer valid.

However, it was discovered in sec 5, that the Pacejka tyre slip model was difficult to align to
real world conditions leading to a large high systemic error between the simulation and real world
environment. As such, the final tyre slip model used is a Pacejka tyre slip model with a very large

2.4. EXTENDED KINEMATIC MODEL 27

linear region, similarly to the model described in (2.4), as it is easily set using an observer from
real world experiments.

Actuators delays

For modeling purposes in mobile robotics, actuators delay can be divided into two types: a pure
delay on the signal and a n-th order delay simulating the physics of the actuator. The pure signal
delay models the transmission and electronic delay from the control system to the actuator. It is
simulated by using an array of values storing the last n steps, and loading the n-th value as the
output value. The n-th order delay models the physical aspects of maximal forces, speeds, and
inertia of the actuator system. It is simulated by passing the command signal into dynamic equa-
tions that represent a n-th order delay equation, which is solved though the simulator’s integrator,
and from that the simulated steering angle is resolved.

0 1 2 3 4 5
Time - [s]

0

2

4

6

8

10

12

14

An
gl

e
- [

de
g]

ctrl, F

F

Pure delay
Second order delay

Figure 2.4: An example of the model’s delayed steering

Figure 2.4 depicts an example of the steering delay that will be used in the following. In the
yellow section, the pure action delay can be observed, where the control output δf does not react
for 0.5s. In the green section, a second order delay can be observed succeeding the pure delay,
the control output starts to converge towards the desired value at a constant rate, and then slows
down exponentially when the target value start to be reached. 1

From these two delay modeling in conjunction, we can now approximate the steering behavior
of the mobile robot, in a simulated context.

2.4 Extended kinematic model

In order to derive a controller for the mobile robot, the dynamical model introduced in (2.3) is not
very tractable due to the number of parameters that need to be known prior. Parameters such as
the mass and inertia can be determined easily, but the varying grip conditions encountered in off-
road applications would require a fast and accurate estimation of said parameters. Despite control
laws based on dynamical model are possible [49], we considered in this thesis the application
of a control algorithm based on an alternative motion representation. Indeed we can consider
the kinematic interpretation of the sideslip angles (used to derive contact forces), in the purely
kinematic representation depicted on the figure 2.5. This ”extended kinematic model” [50] consists
in considering the actual orientation of speed vectors at each contact point, which differs from the
tire’s directions by an angle β. As pointed out on the figure 2.5, two sideslip angles have to be
considered: βF and βR for the front and rear wheel respectively.

Thanks to this representation, we can derive the motion equation in the same way as for a
purely kinematic model. As detailed in [51], the motion equation of the extended model may be
computed as:

1Eq derived from the second order equation, with a time constant τs: τ2s
∂2y
∂t2

+2τs
∂y
∂t

+y = 0, in order to define:

∂2δf
∂t2

=
uδf

−δf

τ2
s

− ∂δf
∂t

2
τ2
s

28 CHAPTER 2. VEHICLE MODELING AND CONTROL

(D)

θ̃

δF

L

y

v

1
c(s)

(Px, Py)
βR

βF

Figure 2.5: The extended cinematic robot model.

Ṗx = v cos(θ + βR)

Ṗy = v sin(θ + βR)

θ̇ = v tan(δF+βF)
L

(2.6)

When in the Frenet frame projection, this model can be rewritten as follows:
ṡ = v cos(θ̃+βR)

1−c(s) y

ẏ = v sin(θ̃ + βR)

˙̃
θ = v

[
tan(δF+βF)

L − c(s) cos(θ̃+βR)
1−c(s) y

] (2.7)

As such, an extended kinematic model has similar properties when compared to a classical
kinematic model, and as such similar classical control methods can then be applied.

2.5 Deterministic steering control

As the thesis is based on the adaptation of control laws, one has to derive a control strategy
for trajectory tracking of a mobile robot. The application context of off-road motion suggests to
account for bad grip conditions. For this, control laws that can account for the sliding angles of the
robot and that are predictive are of interest, as they will be strong candidates for starting point
from which we can compare the methods developed in the following sections.

Adaptive control law from a chained system [Romea]

The first control law is an existing and proven predictive controller for agricultural robotic control,
that uses a chained system as a base for deriving its control equation. The following will briefly
describe this derivation, but a more detailed explanation can be found from [51].

Using as a basis the Frenet kinematic equations (2.2) that are extended with the sliding angles
(as shown in equations 2.7), the following chained system can be derived:

[s, y, θ̃] = [a1, a2, a3] = [s, y, (1− c(s)y) tan(θ̃ + βR)] (2.8)

with the following control variables:

[v, δF] = [m1,m2] =

[
v cos(θ̃ + βR)

1− c(s)y
,
∂a3
∂t

]
(2.9)

Deriving the chained system [a1, a2, a3] over the curvilinear abscissa denoted s (or a1), the
following system is obtained:

∂a1

∂a1
= 1

∂a2

∂a1
= a3

∂a3

∂a1
= m3

(2.10)

2.5. DETERMINISTIC STEERING CONTROL 29

Where m3 = m2

m1
is a new control variable relying on the steering angle. In order to ensure the

convergence of the tracking error y = a2 to zero, a judicious choice of m3 can be:

m3 = −Kda3 −Kpa2 (2.11)

by injecting this expression into the system (2.10) indeed leads to this second order differential
equation for a2:

y
′′
+Kdy

′
+Kpy = 0 (2.12)

Since Kp,Kd are manually chosen, one can select such parameters, which are homogeneous with
proportional and derivative gains, to obtain a stable convergence of tracking error to zero. Using the
reverse transformations from (2.8) and (2.9), one can finally obtain the explicit control expression
for front steering angle:

δF = arctan

(
tan(βR) +

L

cos(βR)

[
c(s) cos(θ̃1)

α
+

A cos3(θ̃1)

α2

])
− βF (2.13)

with:
θ̃1 = θ̃ + βR

α = 1− c(s)y

A = −Kpy −Kdα tan(θ̃1) + c(s)α tan2(θ̃1)

This control expression constitutes the expressions to be applied on the steering angle to ensure
the differential equation (2.12) for tracking error. It requires the knowledge of sideslip angles than
can be observed from the robot’s state, as demonstrated in [51] and briefly detailed in section 2.7.
One has then to substitute the actual value for sideslip angles βF and βR their equivalent observed
values β̂F and β̂R in control expression (2.13).

Since this control law is only reactive, it does not account for actuator delays, low level reaction
times, as well as inertial effects that affect the settling time for he robot to reach a desired yaw rate.
Also, variation in the curvature of the trajectory has to be handled. As such, a predictive method
is employed that corrects the desired steering angle, in order to follow the reference trajectory,
while taking into account the expected steering behavior over a time horizon.

For that, we consider the non-zero part of the left term in equation 2.13 in the absence of
tracking errors and slippage, and replace it with a corrective term, based on a predictive curvature
method that is detailed in [51]. It depends on a time horizon parameter H, which defines the
distance of the curvature lookahead in seconds [s].

predictive control law from constraint optimization [EBSF]

The second control law is also an existing and proven predictive controller for mobile robots, but
over a distance horizon instead of a time horizon, and under constraints. The following will briefly
describe how it functions, but a more detailed explanation can be found from [52].

It is based on constrained linear optimization, where the constraint is formalized such that
the front and rear ends of the mobile robot must remain within a corridor around the reference
trajectory defined by lateral tolerance values. This control law’s inputs are derived by solving the
following system of equations:{

min
U

1

2
Ut
(
BtQB+ R

)
U+ yt

0A
tQBU

DBU+ dgap +DAy0 ≥ 04n×1

(2.14)

Where U ∈ Rn is the control inputs vector at each of the n steps over the chosen distance
horizon, y0 ∈ R3 is the current error state vector, A ∈ R3n×3 and B ∈ R3n×n are the matrices
of the system linearized predicted states Y = Ay0 + BU with Y ∈ R3n×1 the predicted error
state vectors, D ∈ R4n×3n is a block diagonal matrix that contains the dimensions of the robot
represented as a rectangle, dgap ∈ R4n×1 is a vector of the gap size that the constraint must
respect, and Q ∈ R3n×3n and R ∈ Rn×n are block diagonal gain matrices with elements γk

QQ and

γk
RR respectively. (γQ; γR) ∈]0; 1[

2
are forgetting factors, k ∈ [1;n] is the index of a block in the

diagonal, and Q ∈ R3×3 and R ∈ R1×1 are positive definite chosen matrices.

30 CHAPTER 2. VEHICLE MODELING AND CONTROL

The minimization equation can be split into two parts, the first 1
2U

t (BtQB+ R)U minimizes
the control energy, and the second yt

0A
tQBUminimizes the lateral error over the predicted horizon.

From this, the optimizer finds the vector U that minimizes the control energy and the lateral error
over the predicted horizon, while respecting the constraint.

Predictive control parameters are Q(0, 0), Q(1, 1), Q(2, 2), and R = 1.0. Parameters of the
diagonal of Q that define the tracking efficiency refer to the lateral error and its two successive
derivatives with respect to the curvilinear abscissa. Parameter of R which defines the tracking
smoothness refers to the variation in front axle steering relative to the curvilinear abscissa.

The spatial window S is the discretization step, here chosen at 10 cm for an accurate model.
Decreasing it increases the accuracy but also the calculations. Similarly, n = 20 is the number of
steps chosen to define the prediction horizon nS = 2m. The prediction horizon is chosen greater
than the system settling time (2.2ms−1 max speed ×0.15s steering response time = 0.33m), and
large enough to anticipate the trajectory, but not too large to remain within the validity domain of
the model. It has been successfully used in existing projects, and was chosen as it is fundamentally
different approach when compared to the previous control law, this allows for a more in-depth
analysis of our results in the following sections, as it will show if any of the developed methods are
agnostic or dependent on type of control law used.

Tuning control laws parameters

These control laws have been shown in experimentations to be robust, reliable and predictable.
However, they do require some expert knowledge of the system, in order to correctly tune their
control gains for a given situation2, which might be dependent on numerous varying parameters,
which makes then difficult to estimate in real time. Furthermore, these control laws depend on
strong hypotheses and simplifications, which become problematic in strongly dynamic environment,
where these hypotheses and simplifications no longer hold true. For instance, in the first control
approach, three parameters have mainly to be tuned:

• Kp: analogous to a proportional gain, it mainly defines the theoretical distance of convergence
with respect to the lateral error.

• Kd: analogous to a derivative gain, it defines the theoretical distance of convergence with
respect to the angular deviation.

• H: the time horizon of the predicted curvature, allowing the controller to compensate for
the convergence time of the steering with respect to the curvature.

The performance and the stability of the path tracking is highly dependent on the choice of
these parameters, which define the settling distance for the lateral error, as well as an anticipation
windows. Ideally, these parameters need to be tuned to react as fast as possible, all while preserving
the stability (behavior without oscillations). Such an optimal behavior is not easy to obtain, as
it depends on numerous parameters, such as the actuators, the velocity, the sensor noises, and
the grip conditions. To highlight this fact, let us consider simulations using the test-bed hereafter
detailed with two set of parameters:

• set 1 Settling Distance (SD=5m), H = 0.5s

• set 2 Settling Distance (SD=15m), H = 0.5s

The robot follows a desired trajectory at 3 m/s composed of a straight line, a constant curve, and
a second straight line on two kinds of grip conditions defined by two sets of parameters in the
Pacejka model :

• GripA - equivalent to asphalt

• GripB - equivalent to mud

2Due to the non-linear system, transfer function analysis and pole finding is not applicable.

2.6. EXTENDED KALMAN FILTER 31

Results on tracking error, obtained during the path following with two sets of parameters and
two kinds of grip conditions

0 100 200 300 400 500 600

Distance (m)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

T
ra

c
k
in

g
 e

rr
o
r

(m
)

Set 1, Grip A

Set 2, Grip B

Set 1, Grip B

Set 2, Grip A

Figure 2.6: An example of the model’s delayed steering

One can see on this figure the set 1 allows a fast convergence when grip conditions are good
(asphalt), but starts to be unstable with low grip conditions are encountered despite sideslip angles
being correctly estimated (oscillation around null tracking). On the contrary, the second set for
control parameters leads to a stable behavior even when grip conditions are bad, but the settling
distance is sub-optimal when grip conditions are good. The same conclusions can be obtained with
respect to the velocity, actuator delays, or sensor noises.

This example shows the difficulty of tuning a constant parameters with respect to uncertain
and dynamic environment, as well as the limitation of using constant parameters, that by definition
are not optimal in all conditions.

However, there have been some considerable advances in the field of artificial intelligence in last
5 years, specifically in machine learning and reinforcement learning. So, a natural question would
be, is is possible to replace existing control laws using this field of computer science? Indeed, it
has been very successful in many control tasks, such as solving a Rubik’s cube with one hand [20].
This has shown its adaptability and performance when compared to existing control laws. However
these methods are not foolproof, as they are likely less stable and predictable due to black box
nature of some of the methods used, and they require learning from scratch, which ignores the field
of robotic control and the field of automation in general.

2.6 Extended Kalman filter

In the following, an extended Kalman filter [53] is used as state estimator. A Kalman filter consists
of two steps; the prediction step and the correction step. The prediction stage: The model and
inputs are used to predict the behavior of the robot. This phase is formulated as such for an
extended Kalman filter:

x̂k+1 = f(x̂k, uk)

Ck = FkCkF
T
k +Q

(2.15)

where x̂k+1 is the predicted value of the state, f is the non-linear extended kinematic (see
section 2.4) model of the robot, and Fk is the Jacobian matrix of f expressed as follows:

Fk = ∂f
∂x |x̂k,uk

The Correction stage: A measurement is used to correct the predicted value of the state. This
phase is described by:

x̂
′

k = x̂k +K
′
(zk − h(x̂k))

C
′

k = Ck −K
′
HkCk

K
′
= CkH

T
k (HkCkH

T
k +Rk)

−1

(2.16)

32 CHAPTER 2. VEHICLE MODELING AND CONTROL

where x̂
′

k is the estimated value of the state. h is the measurement function; which describes how
the measurements are related to the internal state. Hk is the Jacobian matrix of h:

Hk = ∂h
∂x |x̂k,uk

Q,R, and C are covariance matrices of the model, system noise, and corrected estimation respec-
tively. Q is fix, and represents the errors in the given robot model, R is dynamic and it changes
depending on the level of noise in the measurements, C combines the two and is updated every
timestep.

2.7 Observers

In control theory, some parameters are needed in order to compute the optimal steering angle,
using the controller’s internal model of the environment. Some kinematic or dynamic parameters
are not trivially measured from the robot’s sensors, as such observers are used in order to estimate
their values. Observers consists of ideal models of the robot and its environment, from which a
predicted state is determined and compared to the measured state, and from which the observed
parameter is determined.

In this work, two observers are used, the first is a kinematic observer that derives the sliding
angles from the robot’s estimated state, the second is a dynamic observer that derives the cornering
stiffnesses from the robot’s estimated state and the estimated sliding angles.

Sliding angles observer

As described previously, the sliding angles (in [rad]) determine the difference between the steering
state’s, and the robot’s rate of change it’s heading (i.e. the effective steering state). These angles
are directly proportional to the lateral force over the wheels of the robot, as such it is paramount
in order to effectively determine and model the steering’s behavior over time.

As detailed in [51], it is derived from the following state equation:

ẋ =

[
ẋpos

ẋβ

]
(2.17)

Where xpos = [Px Py θ]T (the x, y positions, and heading) and xβ = [βF βR]T (the front and
rear sliding angles). Which is then used with the function f(x, v, δ):

f(x, δF , v) =

 v cos(θ + βR)
v sin(θ + βR)

v cos(βR)
tan(δF+βF)−tan(βR)

L

 (2.18)

In order to derive the observer:

˙̂x =

[
˙̂xpos

˙̂xβ

]
=

[
f(xpos, x̂β , δF , v) + αpos

αβ

]
(2.19)

Where x̂ = [x̂pos x̂β]
T are the observed sliding angles. In order to convergence x− x̂ towards zero,

the following definition is given:{
αpos = Kpos x̃pos

αβ = Kβ

[
∂f
xβ

(xpos, x̂β , δF , v)
]T

x̃pos
(2.20)

Where x̃pos = xpos− x̂pos is the observation error, and Kpos and Kβ are tunable parameters. From
this, x̂ can be calculated, which derives the desired observed values.

This method however has some limitations, such as the derivatives of the sideslip angles are
considered null, and the derivation from a kinematic model instead of a dynamic model.

2.8. SIMULATED IMPLEMENTATION OF THE MODELS AND CONTROLLERS 33

Cornering stiffness observer

As described in previously, the cornering stiffnesses (in [kN.rad−1]) determines the relation between
the sliding angle and the lateral force over the wheels of the robot. This stiffness is related to the
characteristics of the robot’s wheels, the robot’s mass, and the grip conditions of the ground. As
such estimating these parameters allow for a rough approximation of the grip conditions, which
helps predict the behavior of the robot with respect to the grip conditions.

The first step of this observer is to derive the sliding angles, which can be achieved using the
previous observer.

The second step consists of the following dynamic model:

A(x) =

[
0

−θ̇ + g sin(α)

v

]
, B(δF , δR) =

 −LF cos(δF)

Iz

LR cos(δR)

Iz
− cos(δF)

vm

cos(δR)

vm

 (2.21)

With the state vector x =
[
θ̇, β
]T

.

From this an observed state x̂ is defined, where exponential convergence method allows for the
convergence towards zero of x− x̂.

Once x̂ is derived, the lateral forces car be inferred, and from those using a linear cornering
stiffness model (FF = CFβF & FR = CRβR), the final CR and CF cornering stiffnesses are
obtained.

This observer has some limitation however, such as the loss of observability when the sliding
angle are too small, and the use of a linear cornering stiffness model which starts to become
inaccurate when the sliding angles are too large. In practice, the cornering stiffness is frozen if the
sliding angles are below a given threshold, in order to avoid erroneous observations.

2.8 Simulated implementation of the models and controllers

Accurate and deterministic

The simulator plays an important role in the training and validation process for robotic control
methods. As it must be accurate enough in order to correctly estimate the result of the differential
equations defined by the model. And be deterministic in order for the results, training, and
experiments to be repeatable. This simulator is fully written in approximately 9000 lines of C++
code, and is the result of the source code being rewritten three times from scratch, with an
emphasis on readability first, modifiable second, and performance third (details of which are given
in appendix A.10).

In order for the simulator to be representative enough, the dynamical set of equation (2.3) is
computed to take into account for the influence of dynamical effect as well as low grip conditions,
together with a second order model to account for actuator delays. A sampling rate of ∆t = 0.01s
was used, with a fourth-order Runge-Kutter [54] ordinary differential equation (ODE) solver. As
an Euler ODE solver was unstable with the sliding effect of the dynamic model. Furthermore, the
simulator is designed so that the ODE solver can be easily changed, allowing for quick experimen-
tation with higher order ODE solvers. It is important to note that adaptive ODE solvers were
tested on the simulation (Runge-Kutter-Fehlberg 45 [55] and Adaptive Dormand–Prince 56 [56])
with the error margin set to a value that would lead to comparable compute times to Runge-Kutter
4, however they cause the simulation to underestimate the lateral forces, leading to a significant
error in the accuracy, which was observed when a trained model using this method, performed
very poorly in real world conditions.

In order to make the simulator deterministic, a pseudo random number generator set with
a known seed, is used for each parallel thread. This means that the undeterministic nature of
operating system’s process scheduling is nullified, making the training process fully repeatable.
Furthermore, a Mersenne Twister pseudo random number generator is used, and can be easily
changed in the simulator. Careful attention should be made with the Mersenne Twister pseudo
random number generator, as it has shown to be sub-optimal if the seeding is poorly defined. An
alternative that does not suffer from this problem is the XorShift64.

34 CHAPTER 2. VEHICLE MODELING AND CONTROL

Computationally fast

The computing speed is a key aspect in any simulation, and becomes a strong aspect in the case of
using evolutionary strategies, where a year of simulated time, must be calculated in a reasonable
amount of time.

For this, the simulation is completely written in C++, with some visualization tools, written in
python, that load the C++ generated csv files. However, simply writing in C++ will not yield the
optimal performance, the code must be benchmarked and analyzed, so that useful optimization
can be added. The benchmarking tool perf was used, which count the CPU cycles spent in a given
function, this allows a good visualization of where the bottleneck in performance is. From this,
here are the non-trivial optimizations that were added to the simulation:

• Eigen library: The hand implementation of matrix multiplication is a non-trivial task, as
it requires the developers to write the loops in a cache efficient manner, while also taking
into account possible hardware acceleration such as AVX. Eigen is a powerful linear algebra
library, that uses BLAS and LAPACK libraries 3 to utilize the available performance to its
maximum.

• Latest GCC and Clang compilers: This is often a neglected aspect, but it can be important
to performance. As the compiler is designed to optimize the code to maximize the desired
performance (if -O3 -march=native are used), and more recent compilers will be designed to
use the more recent instruction sets of CPUs.

• OpenMP multi-threading with shallow copies of control systems, allowing uniform distribu-
tion of the simulation work to a very high number of threads (in use-case, we can use up to
32000 cores), without unnecessary copies.

• Strategic usage of memory allocations and references, to avoid allocations or deallocations of
heap memory in hot paths.

• Smart use of search algorithms that are optimized for monotonic functions (which allow gal-
loping search), for finding two values simultaneously (avoiding double search), or for finding
the nearest point in a range (allowing for narrow cache optimized range search based on the
robot’s speed and position) 4.

An interesting expansion of this would be to incorporate GPGPU acceleration to the simulation.
However, in our use cases we did not have any large enough matrix multiplication, or other compute
candidates that would benefit from this. If this would be the case, then the least intrusive approach
would be to use CUDA acceleration for the Eigen library. It should be noted that the simulator
is designed for multi-threading in mind, as such GPGPU acceleration would conflict with the
parallelization strategy, which could cause a significant slow down.

In order to understand the simulator’s performance, here is a table with the percentage of CPU
cycles spent for each task when simulating:

• 74.2% Robot model & ODE solver, of which:

– 20.5% is from the model calculations and ODE solver

– 53.7% is from trigonometric function calls

• 13.2% Neural Network prediction

• 5.2% Sliding observers

• 4.6% Kalman filter

• 1.0% Controller

• 0.4% Path tracking

• 0.2% Dynamic observer

3CPU brand specific variants such as Intel ’s MKL or AMD ’s AOCL can provide higher performance
4A K-D tree search algorithm is the next best candidate, if none of these methods apply.

2.8. SIMULATED IMPLEMENTATION OF THE MODELS AND CONTROLLERS 35

• 1.2% Other (i.e XML loading, getters/setters, random number generator, etc...)

An additional speed up can be obtained with the robot’s dynamic model. Indeed, most of the
sliding angles are between ±5◦, and when this occurs we can use the approximation arctan(x) = x
and sin(x) = x when calculating the sliding forces using the Pacejka model Eq. 2.5, which gives us
the following equation:

Fy = DCBα (2.22)

In practice, this allows for a 47% speed up when computing the robot model (35% when comparing
overall), with a 0.5% error on the lateral forces.

Overall, the simulator is capable of a 1000 : 1 ratio of simulated time to CPU time on a Ryzen
9 3900x CPU. Meaning a 1h real world wall time of simulation with 24 CPU cores in parallel, will
simulate 3600∗24∗1000 = 86400000s, or more readably 2.7 years of simulation for every real world
hour.

Extending beyond the simulator

The simulator was designed to be modular in nature, so the controller and the robotic model could
be swapped in a relatively short amount of time.

Furthermore, for the sake of compatibility between different codes, the neural network (that
will be detailed in the following section) is saved to an xml file, with csv formatting. This is so
the open format can be easily loaded to ROS or other codes, and allows developers to quickly
understand the file format, making it as portable as possible.

Chapter 3

Reinforcement learning approach to
robotic control

3.1 Overview of the machine learning methods

When studying the scope of machine learning methods, three commonly used categories can be
derived from the way they obtain their error signal. They are called self-supervised learning,
supervised learning, and reinforcement learning.

Self-supervised learning

Self-supervised learning (also known as unsupervised learning) is a set of machine learning methods,
that are able to determine patterns from a given dataset. These patterns can be used to analyze
and compare future data points, or to generate artificial data points that are similar to the initial
dataset. These methods are usually used for categorization, clustering of data, lossy compression
(or dimensional reduction), error detection, and data generation.

Some examples include variational auto encoders [57], as they are able to compress a given data
point from a data set into a more compact representation; and generative adversarial network [58],
as they are able to create novel artificial images after training with existing images.

With the robotic control problems, the optimal control output is not in the set of observations,
further more, generating observations would not be of much use for controlling a robotic system.
As such, self-supervised learning will be ruled out as a research possibility.

Supervised learning

Supervised learning is a set of machine learning methods, that are able to train an approximate
regression such as predicting house pricing or classification such as image recognition [16]. To do
this, these methods require that the given input dataset is associated with the matching target
values (known as labels).

Although these methods are capable of training a model to approximate the desired mapping
between the observation and the optimal control output, the methods require the optimal control
output to be given for each observation of a given dataset. This task is not only difficult from
the perspective of time required to label the dataset, but it is also difficult from a conceptual
perspective, as it is not always clear for a given observation what the optimal control output
would be. Furthermore, these methods prevent useful generalization to other robots, controllers,
or environments, as the labeling must be redone for every possible configuration. However, these
methods could be considered in order to improve the perception of the system for our tasks through
state representation learning (SRL) [59, 60].

Reinforcement learning

Reinforcement learning is a set of machine learning methods, that are able to train a policy π,
which for an observation st at a time t, predict the action at: π(st) = at. This action from
the policy is trained to maximize the immediate and future reward r from a user defined reward
function [17]. These methods are able to outmatch expert humans at the game GO [4], and allow

37

38 CHAPTER 3. REINFORCEMENT LEARNING APPROACH TO ROBOTIC CONTROL

for complex control policies that would be hard to define mathematically, such as finding a control
policy for a robotic hand that can solve a Rubik’s cube [20].

These methods are capable of finding the mapping from the observation space to the optimal
control output, encoded in the policy, where the action is the optimal control output. As such,
this class of methods fit the robotic control problematic. The reward can be defined in many ways.
To begin however, it will be defined as the negative of the control errors, so that a decrease in the
error will increase the reward that the method is trying to maximize. As such, the policy for every
observation will give the control output that minimizes the current, and future control errors.

A Markov modeling for robotic control

Time difference reinforcement learning as described by Sutton[17], is based on a Markov decision
process.

Cool Hot Overheated

Slow:
p = 0.5,
r = +1

Slow:
p = 0.5,
r = +1

Slow:
p = 1.0,
r = +1

Fast:
p = 0.5,
r = +2

Fast:
p = 0.5,
r = +2 Fast:

p = 1.0,
r = −10

Figure 3.1: An example of a Markov decision process for a ”racing car”. Each state represents an
environmental state and configuration (position, speed, ...), the action influences the next state,
and the reward is the quality of the transition between two states.

A Markov decision process (MDP) is an extension to the Markov chain, where for a given state
st, an action at will change the transition probabilities to the other states in the MDP, and when
a transition between two states occurs, a reward rt is returned. By defining a policy π(st) = at,
the MDP is reduced down to a Markov chain. The MDP models the environment, and the policy
models the agent in the environment. An example of a MDP can be seen on the figure 3.1.

Policy

Environment

Action
at

Reward
rt

Observation
ot

Figure 3.2: A block diagram of a control loop using reinforcement learning.

With the Markov modeling, the control loop can be reduced to a feedback loop between the
environment and the policy (figure 3.2), where the goal is to minimize the cumulative control error,
by taking actions from the observations.

In the case of controlling mobile robots, the observation is not a direct reflection of the state
of the environment, as the sensors are not perfectly accurate. Indeed, there is information that
is hard to measure such as the sliding of the robot, and the observation has to also encode the
temporal information in order to determine an approximate state of the robot.

These temporal problems, linked with the observability of the robot’s state in the environment,
make the Markov decision process a partially observable Markov decision process (POMDP). This
means the reinforcement learning methods will be impaired, and the training will be harder [17].
Most of the observation noise will be mitigated by an extended Kalman filter, meaning the noise
from the sensors should be reduced substantially but not removed completely.

3.2. TIME DIFFERENCE REINFORCEMENT LEARNING 39

3.2 Time difference reinforcement learning

Time difference reinforcement learning consist of exploiting the immediate and previous rewards,
in order to estimate the expected reward for a given state (i.e. Value function), or for a given
state action pair (i.e. Q-value function) [17]. This allows these methods to estimate the expected
reward while exploring the environment, instead of at the end of each episode.

Most deep reinforcement learning methods use time difference in order to be sample efficient
and as such learn quickly. For this, a critic is used to determine the Value function and Q-value
function, defined by a neural network. The resulting critic can then be used in order to determine
a policy for controlling the system, in order to maximize the expected reward. However, this means
that these methods are strongly dependent on the quality and capability of training said critic, as
in practice the gradient of the critic is used to determine the policy function [61, 26, 62].

Value function

In reinforcement learning, the concept of value function is defined as the cumulative sum of the
current reward rt and future reward rt+1, ..., rT of a given state st.

The goal in reinforcement learning, it to maximize the reward over time. The value function
then acts as an objective target to be optimized [17].

The value function is defined as such:

V (s) = E

[
T−t−1∑
l=0

rt+l+1|st = s

]

It is the expected cumulative reward from a given state. Using reinforcement learning algorithms,
a policy can be optimized that takes actions towards states that have a high cumulative reward.

It can be very costly to estimate the value function at the end of each episode, as such time
difference [63] is used to update the estimation of the value function at every timestep, as opposed
to the end of each episode. An episode is defined as the duration between the time the Markov
decision process started in the initial state and the time it reached a termination state (for example
a racing robot from starting to reaching the finishing line is an episode).

By applying the Bellman optimization (as described in the appendix, section A.1), the following
equation is obtained:

V (s) = E [rt+1 + γV (st+1)|st = s]

Where after a transition from st to st+1, the value function can be updated using the immediate
reward rt+1, and it’s own estimate of itself for the future reward V (st+1), bootstrapping it’s
approximation of V (st), and reducing the number of timesteps needed to converge to the exact
value of V (st). The name time difference is derived from the equation using the future estimate
of the value function as a target for the estimation at current state of the value function.

Action policy

The goal of the policy is to map the quasi-optimal control output from the environment observation.
This policy must be configurable by a vector of parameters that is given from the optimizer,
implying that the policy is a function approximator.

Optimizing the parameters of a function approximate is defined as policy optimization in rein-
forcement learning.

A function approximator is a function that is capable of closely match a target function. Many
classes of function approximators exist, each with its strengths and weaknesses. The following is a
short list of compatible function approximators that can be used for the task.

• Lookup table: where range of values defines a target value. This function approximator
would be similar to the fuzzy logic methods, as they both output discrete values for a range
of input values (such as tabular-TD [17]).

• Polynomial: A natural extension of the linear approximator, and can be seen as a Taylor-
Young approximator of a function [17].

40 CHAPTER 3. REINFORCEMENT LEARNING APPROACH TO ROBOTIC CONTROL

• Neural networks: Currently one of the most popular function approximator in machine learn-
ing, it is defined as a universal function approximator [10]. This means with two hidden layers
of enough neurons, a neural network can approximate any function [17].

Input layer
22

Hidden layer
40

Hidden layer
100

Hidden layer
10

Output layer
2

Perceptron

∑
+b

×w1

×w2

×wn

z

Figure 3.3: An example of a policy model.

A neural network is a sequence of matrix transformations with a bias vector, separated between
activation functions. Each neuron is taking the output of the neurons of the previous layer,
multiplies it by a weight w, sum those weighted outputs together, and add a bias value. An
example of this can be seen on the figure 3.3. The more hidden layers and neurons in the neural
network, the higher the capacity the neural network has to match the desired function, as shown
in [10]. However, this also means that a neural network with a higher number of layers and neurons
than is required, can overfit to the training data, which will not generalize well.

A key aspects in defining a neural network lies in the determination of the exact layer sizes, the
number of layers, and the shapes for activation functions. It indeed relies on different characteristics
and complexity of the desired target function to estimate. As a result, despite some theoretical
works exist on the subject [64], it remains a non trivial problem. As such, a grid search (an
exhaustive generation of search parameters, generated from a list of parameters) is run in order to
test multiple architectures of neural networks, as a neural network that is too small would not be
able to encode the desired action policy, but a neural network that is too big would be harder for
certain optimizers to optimize due to the curse of dimensionality.

Due to the temporal independence nature of the neural network with respect to the input,
the neural network will not have any persistence between two observations. As such if temporal
information is required in order to predict the desired output, the information either needs to be
integrated into the input vector, or the neural network needs to have a recurrent method such as
an LSTM [65].

Existing methods

In order to implement these concepts with neural networks and deep leaning, there exists a large
body of commonly used methods. The first of which popularized to play Atari games in the journal
Nature is the Deep Q network (DQN) from [19], uses a neural network to predict the Q-value (A.1)
for each discrete action from the state vector. In our case we need multiple continuous outputs,
as such the extension of DQN, Deep deterministic policy gradient (DDPG) from [62] is a good
candidate we can consider. Altering DDPG by moving the actor and the critics from a sequential
configuration to a parallel configuration, and by training using the value function rather than the
Q-value, leads us to Advantage actor critic (A2C) from [26], Proximal policy optimization (PPO)
from [61], and Soft actor critic (SAC) from [66]. These are methods that have proven to be good
methods in the field of reinforcement learning, and are often used as baseline methods.

These methods are tested using the RL library Stable-Baselines [67], on controlling the steering
angle of a simulated kinematic mobile robot of 500kg with an action delay of 0.5s at a control rate
of 10hz, trained over canonical trajectories such as a straight line, sine curve, a parabola, and two
splines. From this, the results in Table 3.1 are obtained. It seems that these methods struggle
to converge on some trajectories, and overall have very low performance compared to the existing

3.2. TIME DIFFERENCE REINFORCEMENT LEARNING 41

Romea controller. What is paradoxical, is that these RL methods have shown promise in closely
related environment, such as CarRacing-v0 from Open-AI’s Gym [68].

As such, this implies that there is a fundamental difference that exists from our use case, that
prevents the correct convergence of these methods.

trajectory Existing
controller

SAC PPO DDPG A2C

line 48.20
(±2.45)

60.99
(±22.21)

115.11
(±57.10)

158.14
(±4.09)

57.52
(±15.12)

sine 151.70
(±2.83)

1140.52
(±3004.65)

2403.93
(±2824.32)

309.18
(±5.79)

280.51
(±175.61)

parabola 125.29
(±4.02)

191.48
(±2.43)

389.65
(±6.34)

417.99
(±6.23)

208.80
(±26.57)

spline1 142.04
(±3.45)

508.24
(±152.24)

2864.41
(±14.31)

272.20
(±5.27)

542.85
(±4.47)

spline2 164.94
(±4.45)

6563.63
(±3310.81)

3169.80
(±23.61)

258.85
(±26.39)

437.22
(±736.97)

Table 3.1: The values of the integral of the lateral error over time (in m.s) for every trajectory
with Time difference reinforcement learning methods.

Limitations

At the time of writing, the most studied class of reinforcement learning methods is model free
temporal difference reinforcement learning [4, 20, 67], which updates its actor at each iteration of
the control loop, and does not require an existing system model in order to converge. However,
these methods cannot be used in here, due to the following triad of issues:

Observations at high frequency control

In many control systems, a control loop frequency higher than 1Hz is not only expected, but
necessary. Unfortunately, the Markov decision process that temporal difference reinforcement
learning is based on, requires significant inter states differences in order to converge. And as such,
a high control loop frequency might cause observation issues for the Markov decision process.

Action delays and inertia

Real world systems that are large enough, are subject to strong inertia and action delays. These
are caused by the square-cube law, which implies the volume and weight of an object scales to
the cubed of the length. This causes inertial to no longer be negligible, which mean these systems
have a significant delay between a requested action, and the action taking place. This delay on
the action causes a dissociation between the states, rewards, and actions. Indeed, an action taken
by the reinforcement learning method at time T , will affect the system at a time T + n, which
means that the observation of the effect of the action taken at time T will only be observed at
a time T + n. This effects are even stronger when considering the potential ”pure” signal delay
between the command being computed and when the command is received by the actuator. And
as such, this might cause convergence issues when the delay n is large enough, as the method will
encounter a credit assignment problem, as described in [69].

Noise cancellation of second order filters

Most mechanical systems have significant physical constraints. Indeed, an actuator has a limited
action range and speed, but also a limited acceleration and jerk. These limitations mean that an
actuator system can be modeled by a low pass second order filter, where a desired action controls
an acceleration. One of the unfortunate side effect of a low pass second order filter on the actuators,
is that is will cause a filtering of any high frequency. This means that noise applied to a control
signal will be nullified if the control frequency is high enough. And since reinforcement learning
methods use noise to explore the environment, it suggests that the exploration of the reinforcement

42 CHAPTER 3. REINFORCEMENT LEARNING APPROACH TO ROBOTIC CONTROL

learning method will be nullified. This has already be described previously, and solutions have been
proposed [70].

3.3 Transition to episodic

Due to these limitations, popular methods such as DDPG, A2C, and PPO cannot be used, as they
depend on time difference reinforcement learning. As a result, a different class of reinforcement
learning methods must be considered.

Reinforcement
Learning

Model based

• Dyna

• ...

Temporal
difference
Methods

MDP

• DQN

• DDPG

• A2C

• PPO

• ...

POMDP

• DVRL

• ...

Direct
Policy search

Gradient-based

• Reinforce

• ...

Gradient-free

• Random search

• CEM

• CMA

• ...

Figure 3.4: A hierarchical diagram of some of the types of reinforcement learning methods.

Figure 3.4 depicts a classification of commonly used types of deep reinforcement learning meth-
ods. The ones discussed up until now were the Temporal difference methods, and more specifically
the ones based on a Markov Decision Process (MDP). As shown previously, these methods are not
capable of converging correctly on the desired system, due to their intrinsic features. As such, the
category of Temporal difference methods must be unfortunately excluded if we wish to conserve a
high control frequency.

An alternate category would be Model based methods, which seem promising as they use a
model of the system in order to generate an action policy (e.g. [4]), however they generally use a
Markov Decision Process (MDP) as a modeling tool, in order to apply a planing strategy for their
policy. This means they will also suffer from the same intrinsic features of the previously considered
systems, and as such will also struggle to converging correctly at a high control frequency.

The final category described is the Direct policy search, which consists of using an optimize
to directly tune the action policy from an objective function. This means that these methods
do not require a Markov Decision Process (MDP) as a modeling method, and do not require
an estimation of the value function in order to converge. This isolates these methods from the
previously described issues relating to the intrinsic features of our system.

Within the Direct policy search methods, we can describe two subcategories: Gradient-base
methods and Gradient-free methods. The Gradient-base methods depend on a gradient between
the output of the action policy and the objective function. In our use case, assuming the objective
function is proportional to the error, the following gradient is derived:

∂obj

∂u
∝ ∂e

∂u
=

∂e

∂X

∂X

∂y

∂y

∂u

obj is the objective function, u the control vector, y the measurement vector, X the state vector,
e the error vector. From this, ∂e

∂X denotes the rate of change of the tracking error, ∂X
∂y denotes the

rate of change of the state estimator, and ∂y
∂u denotes the rate of change of the robot and sensor’s

model. This shows that the gradient from the objective function to the control output from the
action policy, is quite complex, non-linear, and noisy due in part to sensor accuracy and model
accuracy. As such, it would be sub-optimal for these methods.

3.4. GRADIENT-FREE DIRECT POLICY SEARCH 43

The Gradient-free Direct policy search methods category on the other hand seems like a good
candidate, as these previous works [71] seem to suggest it has comparable performance to Temporal
difference methods. As such, it is the category of methods that will be used in the following.

3.4 Gradient-free Direct policy search

An alternative to time difference

In some tasks, a Gradient-free Direct policy search using the optimizer called Natural Evolutionary
Strategy (NES) from [72] was shown to have equivalent performance when compared to existing
time difference reinforcement leaning methods [71]. As such, they are a promising approach for
the desired task.

Gradient-free Direct policy search methods differ from the classical time difference reinforce-
ment learning methods in the following ways:

• No Reward: Instead an objective function is used, and as such the optimization target G(s)
is directly written by the developer, and not deduced from integrating the reward over time.

• Episodic Training: i.e updating the neural network at the end of each episode, where an
episode is delimited from a starting state to a terminal state. As opposed to updating the
neural network at each timestep.

• No critic: In order to obtain a gradient for the action policy, a time difference reinforcement
learning method needs a critic that needs to learn the Q-value or value function. However,
since a gradient-free method is used, no critic is needed, which reduces the search space, and
helps to distance these methods from a Markov modeling.

• Moving from gradient descent (e.g PPO, A2C, DDPG, ...) to a black box optimizer due to
the gradient not being available here with a lack of a critic. As such, the optimizer changes
the weights & biases of the neural network directly.

Moving from reward to objective function

Usually in time difference reinforcement leaning, the reward is used as a target for the optimization
process through gradient descent. This reward is defined as the value that is maximized when a
desired behavior has been taken. It is returned at each timestep between two observed states.

However, when using gradient-free direct policy search, an objective function needs to be used
in order to be compatible with black box optimizers for direct policy search. An objective function
in our case is obtained at the end of an episode, and is minimized when a desired behavior has
been taken.

The objective function takes the set of all the observed states during an episode, and then
returns a scalar value that express the performance of a given episode. This allows for arbitrary
integration to take place in the objective function.

More formally, it takes a set of states of size k taken over a time span T defined as S ∈ Rn×k

where, s ∈ Rn, k ∈ N, and st ∈ S for any 0 ≤ t ≤ T , and returns an objective function value in R.
This leads to our definition for our objective function as: obj : Rn×k → R.

44 CHAPTER 3. REINFORCEMENT LEARNING APPROACH TO ROBOTIC CONTROL

Optimizer

NN &
Controller

Robot
Model

Inte-
grator

Sensor
Model

Obs &
Est

Obj
func

weights & biases

u

Ẋ

X z s obj

X

Xs

sim ctrl loop

Cost function

Figure 3.5: The full training loop with the objective function and optimizer.

The figure 3.5 denotes how each element of the control loop interacts in the simulation (through
the RK4 integrator), and with the optimizer. The sim ctrl loop denotes the inner control loop that
is run over the trajectory, and the Cost function denotes the system that the black box optimizer
is optimizing guided using the objective function that the Cost function returns at the end of each
episode.

Optimizers for episodic reinforcement learning

A black box optimizer must be used for gradient-free direct policy search. Due to lack of time,
restart strategies associated with optimization method [73, 74] have not been explored, however
these paths could lead to higher performance. For the direct policy search a first natural and trivial
candidate optimizer to test is a Basic random search algorithm.

Basic random search

The Basic Random Search (BRS) method (from [75]) is based on the following idea: take a vector
of independent and identically distributed variables of the same size as the search space. Then add
and subtract this vector to the mean value, in order to create two candidates for the population.
Once both of these candidates are evaluated, update the mean proportionally to the evaluated
return of the objective function, so that the mean tends towards the minimum of the search space.
In some tasks, this method has shown surprisingly good results despite the simplistic nature of the
algorithm [75].

Unfortunately, this method yields poor performance due to the constant variance (or stepsize)
of the sampled vector, causing Basic random search to find solutions around the local minimum,
but being unable to reduce its stepsize in order to find solutions within the local minimum.

Details of this algorithm and a comparison with the other optimizers can be seen in ap-
pendix A.2, from this the performance of BRS seems very low compared to the other methods,
and as such is discounted.

CEM

A more complex method we can consider is the Cross-Entropy Method (CEM) from [76]. It consists
of sampling candidates of a population P from a mean µ and a standard deviation σ using a normal
distribution:

P ∼ N(µ, σ2)

Once the population P is evaluated, an elite selection (usually 1
5 th of the population size) is

selected as the basis for the mean µ and a standard deviation σ of the next generation, which
allows for a step by step iteration towards the nearest local minimum.

However, this method returned a sub-optimal performance when used in training, due to its
fast convergence towards the nearest local minimum, when potentially better minimums might
exist nearby.

3.4. GRADIENT-FREE DIRECT POLICY SEARCH 45

Details of this algorithm and a comparison with the other optimizers can be seen in ap-
pendix A.2. From this, the performance of CEM is consistent and better than BRS, but sub-
stantially lower than the next method, CMA-ES.

CMA-ES

In the world of stochastic optimization, few strategies are able to reach the widespread use of
CMA-ES; in part because of its capacity to optimize high dimensional problem spaces, and its
capacity of optimizing highly modal problems (meaning problems with many local optimums) [77].

CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) from [78] is an evolutionary
strategy used for stochastic optimization of a problem space over a given objective function. In
order to do this, CMA-ES calculates an estimate of the covariance matrix over each dimension of
the problem space for the target objective function.

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

−5

0

5

Figure 3.6: The CMA Evolution strategy, each point is a sampled population, the cross is the
mean, the full circle is the covariance, and the dotted circle is the old covariance. Left: the initial
population sampling from the mean and the covariance. Middle: the elitist selection after the
evaluation, updated mean and covariance in the direction of the local minimum. Right: New
covariance and mean for sampling the next generation

P ∼ N(µ, σ2C)

The population P, generated by the CMA-ES method, is sampled from multivariate Gaussian
distribution with a mean µ, a global variance σ, and the covariance of the search space C. At each
iteration, the population is evaluated, and from the population with the lowest objective function
score, the covariance, mean, and global variance are updated toward the objective function’s local
minimum.

This allows the CMA-ES method to find which parameters are covariant between each other
with respect to the objective function, and avoids sampling solutions that do not converge towards
the local minimum of objective function. In theory, it accelerates the convergence speed of the
method.

Sampling over the covariance matrix can also be seen as projecting the problem space through
the accuracy matrix (inverse of the covariance matrix), allowing for a random search in a normal
Gaussian space.

P ∼ µ+ σC
1
2N(0, I) <=> C− 1

2P ∼ C− 1
2µ+ σN(0, I)

When tested over the environment, this method shows the highest performance out of the
tested methods (see appendix A.2). The CMA-ES method having been confirmed as the best
solution from the tested methods, we then proceeded to compare some of the CMA-ES variants
(see appendix A.3), in order to determine an ideal method for the training, in order to obtain
solutions that have the desired performance, without having a compute cost that is too high
(computing cost versus solution performance).

Due to neural network’s parameters being roughly independent, we can use the separable variant
of CMA-ES, sep-aCMA-ES [79] (as shown and explained in appendix A.3). As such, sep-aCMA-ES
will be used in order to optimize our neural network for controlling a mobile robot.

46 CHAPTER 3. REINFORCEMENT LEARNING APPROACH TO ROBOTIC CONTROL

3.5 CMA-ES based training in simulation

Due to the nature of CMA-ES, training is not practical in real world conditions due to its parallel
nature of comparing many candidates in similar conditions.

As such this approach has two phases. The first one is a training phase in simulation, using
CMA-ES in order to determine an optimal neural network. And during a second phase, the trained
neural network is used by itself without CMA-ES and in real time, in order to control the mobile
robot from the input state.

During the training phase, the neural network given as a starting for CMA-ES is defined
randomly using a Xavier initialization [80]. This allows for an initial randomized output from the
neural network, rather than having a neural network set to 0. This allows for the exploration
rate σ to be considerably reduced, and allows the CMA-ES method to spend more compute time
optimizing the parameters of the neural network. In practice, this improved the training of the
neural network, allowing it to reach lower values in the objective function.

Furthermore, consistency issues with training and qualities of local optimal can be observed.
In practice this meant that any two training generated very different neural networks, with varying
performance. For the first aspect of training consistency, the use of regularization of the neural
network can be used, in order to reduce overfitting and find more general solutions to the task. A
natural fit for this would be batch normalization, as it allows for regularization without applying
the dropout method which can hinder the training process. However, the use of batches when ap-
plied to prediction is not practical, as in the context of reinforcement learning the next observation
is directly dependent on the current action that needs to be taken, which means that the obser-
vation cannot be stacked into a batch to be computed simultaneously. As such, we used a similar
methodology as described in [71], which consists of generating an example batch for normalization
1, that is then used throughout the training with the CMA-ES method. This batch is generated
in order to describe a close approximation of the distribution of each input parameter, which can
be done using an existing controller that is tuned with constant gains.

This setup of CMA-ES and the neural network is then trained over a set of canonical trajec-
tories and trajectories derived, in order to reach a full dataset of varying conditions. Where the

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

Figure 3.7: A representation of the trajectories used in training.

trajectories are depicted in figure 3.7 and detailed in section A.12.
These trajectories are tested at multiple speeds, with varying grip conditions, multiple times

(in this work 5 times) in order to increase the consistency of the result by using the Law of
large numbers. Overall, each neural network candidate is tested approximately 1000 times (5
trajectories with 2 scaling factors, 5 times, with 5 grip conditions, at 4 different speeds), before the
final cost value is determined, and returned to CMA-ES, in order to quantify the given candidate
neural network. This is then repeated for the entire population of neural networks P that CMA-
ES sampled (in our case, we chose a population size of Npop = 32, from [78] where Npop =
4+ ⌊3 log(N)⌋, with N = 15000 being the number of NN parameters that CMA-ES tunes). CMA-
ES is then used in the simulator previously described.

3.6 Neural network architecture

The neural network chosen must be well constructed. Indeed, if it is too small it might not be
able to encode the desired transformation between the input state and the desired control output.
However, if it is too big, then the CMA-ES optimizer might not be able to properly converge due
to the curse of dimensionality, and the large search space. As such, a compromise between training
performance and neural network capacity must be reached.

The exact layer size, number of layers, and the kind of activation function are all meta param-
eters that are difficult to know in advance for a given task. As such, a grid search is run in order
to test multiple architectures of neural networks, along with some trial and error.

1The batch is generated of random samples using the reservoir sampling algorithm.

3.7. REINFORCEMENT LEARNING STRATEGY SELECTION 47

First, a neural network of a single hidden layer is defined and tested, as it is a universal
approximator [10]. The size of the hidden layer is then incrementally increased, until the CMA-ES
method’s training performance (measured through the objective function) starts to reach a plateau.
This means that we have reached the maximum number of parameters of the neural network, while
still being trainable by CMA-ES.

Then, the neurons on a hidden layer are split in such a way to increase the depth of the neural
network (increasing it’s non-linearity), while preserving its number of parameters. The performance
is then compared with the previous iteration, and is preserved if the performance is better. This
is done until the number of layers is set.

Finally, the neurons are distributed across the layers, in such a way as to improve the perfor-
mance. Generally, wide layers can interpolate more intermediate values when compared to small
layers.

Input layer

Hidden layer
64

Hidden layer
128

Hidden layer
32

Output layer

Figure 3.8: The neural network architecture used in the following works.

From this, a fully connected neural network of size 64,128,32 reached a good balance between
a low number of parameters (approx 15000), and good performance in our use case, and as such is
the neural network used in the rest of the work presented. Of course, this values are very dependent
on the problem, and should be rechecked periodically as the task or the inputs might require more
or less parameters in order to optimally approximate using CMA-ES. In this work, over 20 unique
architectures were tested, in order to reach the final neural network architecture, each one taking
about a day to train and validate.

3.7 Reinforcement learning strategy selection

In this chapter we have discussed several methods to apply machine learning for off-road mobile
robot trajectory tracking. We saw the limitation of different strategies (such as time difference
reinforcement learning, supervised learning, and unsupervised learning). From which we propose
the following solution: Applying episodic reinforcement learning using policy iteration, over a
neural network with 3 hidden layers and tanh activation functions, that is optimized using sep-
aCMA-ES with a population of 32 for 20000 iterations. The analysis of the neural network will be
assisted by a feature importance strategy, as described in section A.4

Based on this configuration, we will now investigate several strategies for the proposed training
method to act on the autonomous driving system. In particular a classical End-to-end approach
called NN controller , a corrective approach called Delta NN ctrl , and a parameter tuning
method called NN gain tuner .

Chapter 4

Applying reinforcement learning for
robotic steer control

4.1 Direct steer control using Reinforcement learning [NN controller]

An ideal first approach to implementing reinforcement learning to robotic control, would be the
canonical approach in reinforcement learning, which consist in controlling directly the robot with
a neural network using the current state of the system and the reference trajectory as inputs. In
this chapter, the steering will be controlled in order to compare with our reference controller for
mobile robot steering control, and the speed is set to a constant value in order to simplify the
analysis initially.

Experimental setup

Control loop setup

In this part, the neural network directly controls the steering of the mobile robot’s system, as shown
in the figure 4.1 where the neural network takes the errors, curvature, and speed of reference, then
returns the predicted steering control output.

Robot

Observer

Trajectory

MeasuresState

Optimizer

NN controller

Errors, curva-
tures, speed

Objective
function

Target Speed

Steering

Parameters

Figure 4.1: Overview of the proposed method.

The neural network is trained in a simulation using the CMA-ES optimizer, depicted as the
Optimizer in the figure 4.1, which takes the objective function value and returns the parameters.
The neural network takes as input the same information as an existing steering controller, which is
the lateral error, angular error, curvature, future curvature (20 sampled points over a 5s horizon of
prediction, chosen in order to approximate the useful future curvature within 3 times the effective
delay, while avoiding sub-sampling problem and without increasing the number of inputs by too
much), speed, and the robot’s steering state. And as control output the steering angle, with the
speed control output being defined as constant (similarly to [24, 21, 25, 27, 28]). An Extended
Kalman Filter (EKF) [53] is used as the Observer in order to filter the noise from the robot’s
sensors, and improve the accuracy of the tracking. The Robot block is the dynamic model of the
robot in section 2.3, using a Runge-Kutta (RK4) integrator.

49

50
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

Objective function

The objective function is defined as a composition of different targets. Indeed keeping a minimal
distance to the trajectory is not sufficient as an optimization target, as it does not prevent from
oscillations when the lateral error is low enough. As the function needs to return a scalar value
from a set of sampled state vectors (as shown in section 3.4), an integration must take place. As
such, an absolute value 1 discrete integration over the curvilinear abscissa is done, in order to avoid
any side effects due to speed modulation. The result of the integration is then normalized over
the length of the trajectory in order to keep the objective function values consistent between each
trajectory.

The first component defined objerr, describes the penalty over the lateral error. Where N is
the number of samples recorded over the trajectory, sN is the length of the trajectory, and the
remaining notation is consistent with convention defined in section 2.2 and in section 2.3:

objerr =
1

sN

N∑
i=0

|kyiyi|∆s [m] (4.1)

Where kyi is a dynamic objective function parameter, that will change the lateral error penalty if
the lateral error exceeds a given limit ylim:

kyi =

{
ky low if |yi|≤ ylim
ky high else

And where ∆s denotes the difference of the curvilinear abscissa over the time difference ∆t:

∆s = v cos(θ̃)∆t

The second part of the objective function is the penalty over the steering angle, as the robot’s
steering should match the steering needed to follow the curvature of the trajectory:

objsteer =
1

sN

N∑
i=0

|Lc(s)− tan(δFi)|∆s [] (4.2)

The final composition of the objective function can now be defined, with ksteer as the pro-
portional gain between the steering angular error penalty and the lateral error penalty (measured
in meters). It is important to note that lateral error and angular error are not opposing targets,
as they will both tend to be positively correlated and moving in tandem with each other. This
means that they can both be added in a linear fashion, without any unusual side effect from the
optimization (i.e it will not over-optimize one at the expense of the other).

As such the objective function obj1 is defined as:

obj1 = objerr + ksteerobjsteer [m] (4.3)

Or more completely:

obj1 =
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s

In this chapter, the objective function for training is defined with an allowed error corridor of
ylim = 0.20m. It was found experimentally though trial and error that a ksteer = 32, ky low = 1,
and ky high = 10 returned a trained model with the ideal performance.

Surface error

The metric used for the analysis of the results is the surface error:

Aerror =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)∣∣∣∣∣ ∆t [m2] (4.4)

1An absolute value of the errors was chosen, as the square of the value yielded sub-optimal results when tested.
2ksteer was determined by increasing it slowly from zero, until a stable behavior was obtained.

4.1. DIRECT STEER CONTROL USING REINFORCEMENT LEARNING [NN
CONTROLLER] 51

This is done, in order to validate and compare the performance of the different tested methods and
parameters, without resorting to the objective function. Indeed, when a reinforcement learning
agent trains to optimize a function, it is possible that the said agent might exploit the objective
function in order to minimize it, without achieving the desired behavior. As such, using a different
metric to measure performance allows for minimal bias when comparing the methods.

Training details

The neural network is trained over 5 unique trajectories (estoril5, estoril7, estoril910, line, and
spline5 as shown in A.12) twice with two varying scaling factors of 1 and 2 (this is done so longer
trajectories are also tested with lower curvatures), at speeds of 1.0, 2.0, 3.0, and 4.0 m.s−1 (due
to training difficulties, the speed is limited at 4.0m.s−1), with varying grip conditions (cornering
stiffness ranging from 7000 to 30000). Properties of the robuFAST experimental mobile platform
are used as parameters: a wheelbase of 1.2m, 430kg of weight, a max steering angle of 15◦, and a
max acceleration 0.5m.s−2. The training took approximately 12h over 24 cores of a high end CPU,
with a decreasing objective value that plateaued which seems to indicate a successful training of
the system to the possible local minimum.

Simulated results

The trained method along with the baselines controllers were tested in the simulation with the
same speeds, trajectories, and grip conditions as used in the training of the trained method. These
tests were run 100 times each in order to get a consistent mean and variation for each method.

In order to compare the performances of the neural network approach with deterministic meth-
ods a baseline using constant gains for the control methods needs to be defined. The forthcoming
results will be compare to the controller define in equation 2.13. As has been mentioned previously,
the Romea control parameters relies, among others, on the robots speed. As a result, to highlight
the efficiency of proposed neural network approaches, the gain of the deterministic approach has
configurations with respect to the desired speed. The following table shows the selected parameters
for a conering stiffness of 16000N.rad−1, with centimetric position accuracy. These parameters are
defined up to 4m.s−1, as the methods trained in the nexts sections were not able to converge with
a speed higher than 4m.s−1. The second deterministic control approach, acting also as a second

1.0 2.0 3.0 4.0
kp [m−2] 1.0 0.7 0.4 0.4
kd [m−1] 0.25 0.1225 0.01 0.01
H [s] 0.5 0.5 0.5 0.5

Table 4.1: Control parameters used with Romea.

reference, and defined in expression 2.14 relies on some parameters, also related to the robot speed.
This controller EBSF was tuned with the following gains for each speed: Where the horizon of

1.0 2.0 3.0 4.0
kp [m−2] 24.0 24.0 24.0 24.0
kd [] 120.0 120.0 150.0 150.0

kdd [m2] 140.0 210.0 300.0 300.0
H [s] 2.0 1.0 0.66 0.5

Table 4.2: Control parameters used with EBSF.

the EBSF control law is defined over a distance of 2m, and as such is dynamic with respect to the
speed, as shown in the table above.

Quantitative Analysis

The trained neural network has then been tested through simulation on the same trajectory and
speeds used during the training, and compared with deterministic approach. A first set of simulated
runs was computed, from this the table 4.3 was obtained (where the mean and standard deviation

52
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1
Romea 1.18 (±0.35) 1.40 (±0.63) 29.19 (±0.75) 2.37 (±1.27) 1.09 (±0.04)
EBSF 1.24 (±0.37) 1.46 (±0.70) 36.80 (±0.65) 2.64 (±1.16) 1.10 (±0.04)

NN controller 1.43 (±0.31) 2.42 (±0.60) 21.63 (±0.82) 3.94 (±1.08) 1.29 (±0.05)

2m.s−1
Romea 1.54 (±0.50) 2.65 (±1.26) 33.42 (±0.79) 4.75 (±1.56) 1.12 (±0.06)
EBSF 1.55 (±0.50) 2.31 (±1.34) 39.75 (±0.84) 5.76 (±1.92) 1.11 (±0.06)

NN controller 2.10 (±0.33) 3.02 (±1.14) 18.30 (±0.74) 5.33 (±1.22) 1.64 (±0.06)

3m.s−1
Romea 3.13 (±1.07) 5.96 (±1.50) 53.41 (±1.40) 9.59 (±1.27) 1.21 (±0.10)
EBSF 2.09 (±0.70) 3.54 (±1.35) 47.21 (±1.18) 14.88 (±1.91) 1.16 (±0.07)

NN controller 3.19 (±0.52) 3.55 (±1.20) 20.59 (±1.25) 5.78 (±1.31) 2.49 (±0.11)

4m.s−1
Romea 4.31 (±1.49) 7.90 (±1.49) 55.82 (±2.54) 11.29 (±1.48) 1.28 (±0.17)
EBSF 3.59 (±0.92) 4.96 (±1.02) 51.97 (±2.33) 92.30 (±176.29) 2.15 (±0.25)

NN controller 6.60 (±1.42) 7.90 (±1.97) 28.53 (±3.25) 8.80 (±2.71) 4.87 (±0.85)

Table 4.3: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 0m.

over 100 runs is given). It describes the Surface error from the equation (4.4), for each method at
all the speeds and trajectories used during training, with an initial error of 0m. The underlined
and bold values mean that the result is significant and has a p-value3 below 10−3, determined
using the Welch-t test [81].

Overall, the average surface error for the NN controller is noticeably lower than reference
methods at 6.69m2, where as the surface error for Romea was 8.39m2 (a 17.0% reduction), and
the surface error for EBSF was 10.0m2 (a 33.1% reduction). From this table, the NN controller
was able to match or exceed the performance of the existing controllers in some cases. Notably
the estoril910 and spline5 trajectories, as they have successive corners with high curvatures which
means the NN controller is able to learn the specific dynamics of the system and compensate
accordingly, where as the existing controllers must be stable for any robot and trajectory, implying
they must be sub-optimal when compared to a method that has been tuned for a given system.
However, it is clear that the NN controller is not ideal, as it has a significant decrease in
performance in the straighter trajectories such as estoril5, estoril7, and the canonical straight line.

From this, it seems clear that the NN controller is sub-optimal as it is not capable to match
existing controllers with simple trajectories, and is exploiting the dynamic effects of the simulations
in order to reach comparable performance when compared to the existing controllers, which can
be seen as overfitting if view in the context of supervised learning.

Nonetheless when adding an initial lateral error of 1m at the start of the trajectory, the NN
controller is able to reach impressive performance, as seen in table 4.4. This is due to the fact,
that settling times defined by the gains chosen in the tables 4.1 and 4.2 for the deterministic control
laws are set to a low values at high speed (in order to reduce oscillating behavior), which reduces
the initial convergence distance. On the contrary, the NN approach allows for faster reactions, as
there is no predefined nor fixed settling distance. This highlights the importance of potentially
changing the control properties in an online fashion, and not only depending on the robot’s target
velocity.

Overall, the average surface error for the NN controller is noticeably lower than reference
methods at 8.83m2, where as the surface error for Romea was 14.2m2 (a 38.1% reduction), and
the surface error for EBSF was 15.1m2 (a 41.5% reduction). From this table, the NN controller
was able to match or significantly exceed the performance of the existing controllers in every case.
Notably again in the estoril910 and spline5 trajectories. This change in performance is not obvious
from an quantitative view, as it is due to the existing controllers not being able to change their
reactivity when the lateral error is large enough and/or the speed is low enough (e.g the initial

3The p-value is defined as the probability that the values obtained from the methods could be derived from the
same distribution, and as such cannot be not clearly defined as significant. The lower the probability, the more
likely the results are significant.

4.1. DIRECT STEER CONTROL USING REINFORCEMENT LEARNING [NN
CONTROLLER] 53

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1
Romea 4.42 (±0.36) 4.66 (±0.61) 32.44 (±0.76) 5.61 (±1.25) 4.35 (±0.08)
EBSF 6.19 (±0.37) 6.39 (±0.69) 41.76 (±0.65) 7.58 (±1.13) 6.04 (±0.06)

NN controller 3.59 (±0.31) 4.55 (±0.59) 23.75 (±0.81) 6.07 (±1.06) 3.42 (±0.10)

2m.s−1
Romea 5.92 (±0.49) 7.07 (±1.25) 37.81 (±0.79) 9.03 (±1.55) 5.52 (±0.09)
EBSF 6.32 (±0.49) 7.07 (±1.32) 44.48 (±0.83) 10.46 (±1.92) 5.88 (±0.09)

NN controller 4.30 (±0.32) 5.12 (±1.14) 20.44 (±0.72) 7.44 (±1.20) 3.67 (±0.06)

3m.s−1
Romea 11.19 (±1.11) 13.81 (±1.53) 61.53 (±1.40) 16.54 (±1.27) 9.21 (±0.14)
EBSF 7.75 (±0.72) 9.15 (±1.33) 52.84 (±1.16) 20.26 (±1.87) 6.80 (±0.11)

NN controller 5.44 (±0.50) 5.81 (±1.25) 22.64 (±1.19) 7.80 (±1.27) 4.59 (±0.13)

4m.s−1
Romea 12.28 (±1.56) 15.62 (±1.52) 63.83 (±2.54) 18.37 (±1.43) 9.15 (±0.17)
EBSF 9.18 (±0.96) 10.48 (±0.98) 57.62 (±2.46) 91.77 (±165.52) 7.69 (±0.23)

NN controller 8.88 (±1.41) 9.94 (±1.78) 31.63 (±5.14) 10.47 (±2.59) 7.19 (±0.92)

Table 4.4: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

section of a trajectory) due to their control parameters not adapting to the robot’s state and
environment. 4

Qualitative Analysis

In order to avoid overloading the figures and due to the performance of the EBSF method, they are
omitted from the qualitative analysis. When focusing with a qualitative analysis over the spline5
trajectory, at 2m.s−1 with 1m of initial error, the following results are obtained.

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

5

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
NN controller
Romea controller

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

NN controller
Romea controller

Figure 4.2: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

Figure 4.2 shows the reactivity of correcting the initial lateral error described previously, as the
NN controller provides fast convergence to the trajectory, and tracking similar to the existing
predictive controller, as shown in the error plot.

This result is clearly visible in the objective function and surface error plots over the curvilinear
abscissa shown in Figure 4.3, as the NN controller avoids the large penalty at the start of the
trajectory. However it seems that the NN controller is inducing large errors in the corners from
15 ≤ s ≤ 30 and 45 ≤ s ≤ 60.

Observing the steering over the curvilinear abscissa shown in Figure 4.4, the NN controller ’s
control strategy seems to be based on a bang-bang control (as seen by the distinctive saw-tooth
appearance of the steering state). This strategy may seem counter intuitive at first. But, due
to the second order filter of the low-level steering controller, the control signal from the NN
controller is being low-pass filtered. Unfortunately, this low-pass filter is not ideal as it still
allows for some strong oscillations on the steering state. Furthermore, this makes the control task
for the NN controller very complicated, as it is not predicting the steering value directly but

4This quick convergence to the trajectory seems to be a distinctive feature of all the NN based approaches.

54
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

2

4

6

Su
rfa

ce
 E

rro
r -

 [m
2]

NN controller
Romea controller

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

NN controller
Romea controller

Figure 4.3: On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

st
at

e
-

f [
de

g]

NN controller
Romea controller

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

co
nt

ro
l -

 u
f [

de
g] NN controller

Romea controller

Figure 4.4: On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa.

instead has found a pattern that allows for approximating the steering value through the non-ideal
steering actuators. This could be solved though the tuning of the ksteer parameter of the objective
function, however as it is based on the steering state and not the steering control it would only
slightly dampen the oscillation visible on the steering control plot, and not remove them (the ksteer
value is set correctly when use in other configurations, which implies this is a characteristic of this
method of control). This makes the NN controller very opaque to understand. As such, a feature
importance analysis may be performed in order to better understand the behavior of the neural
network.

Feature importance

In order to better interpret and understand the neural network, a gradient based Feature impor-
tance analysis can be used to determine which inputs where useful, and quantify the utility of
each input with respect to each output. See section A.4 for details on the theory and implementa-
tion of the gradient based Feature importance analysis for the neural network. Using the Feature
importance analysis, the following results are obtained:

y
[m

]

 [r
ad

]

dy
/dt

 [m
. s

1]
d

/dt
 [r

ad
. s

1]

v
[m

. s
1]

fut
ur

e c(s
) [m

1]

F [
ra

d]

c(s
) [m

1]

0

5

10

15

20

25

30

%
 Im

po
rta

nc
e

uniform importance
DELTA_F

Figure 4.5: The feature importance for the NN controller method for each input, denoted in %
of importance.

From the figure 4.5, the inputs that contribute the most the steering output of the method are

4.2. CORRECTIVE STEER CONTROL [DELTA NN CTRL] 55

in order of importance the lateral error denoted y, the angular error denoted θ̃, the rate of change
of the lateral error denoted dy/dt, and the rate of change of the angular error denoted dθ̃/dt which
all contribute a total of at least 80% of the variations of the steering output. The steering denoted
δF and the immediate curvature denoted c(s) are significantly below the expected importance for
a uniform importance distribution, which implies that they are not significant for the output (5%
total importance for both).

This shows that the NN controller is capable of imitating the existing methods for controlling
the robotic platform without prior knowledge, as the Romea/ESBF methods also uses the lateral
and angular error in order to accurately control the robot. Furthermore, the immediate curvature is
not important to the NN controller when compared to the future curvature which has predictive
capabilities over the errors, although it is a requirement for the objective function the trained
neural network is able to achieve a tracking behavior using a quasi-PID approach.

Analysis of the approach

Overall, these results seem promising but are not ideal. Indeed, NN controller is able to learn
a valid control law, but it is based on a highly oscillating control strategy, which will lead to
dangerous behavior in real world conditions. Furthermore, it seems only able to outmatch the
existing controllers due to their constant reactivity and that the NN controller can specialize its
control output for the task and the robot. This non-ideal behavior may be due to:

• The objective function, but it is unclear how the objective function should be changed in
this case.

• The dataset, but this is unlikely, as we are testing in the same training environment for a
large amount of time, so overfitting is expected, not underfitting.

• The CMA-ES optimizer, but there seems to be no papers on the subject to indicate why or
which optimizer would work better. Off empirical evidence, it seems that CMA-ES works
best in our configuration (as shown in section A.3).

As such, there is no clear reason as to why the NN controller showed low performance, with
the exception of the training difficulty. The training difficulty is a qualitative concept that defines
how hard is it to train a valid function estimator (i.e a neural network) from the given target
and setup. In this case, the neural network needs to estimate a valid control output, in order
to minimize an objective function, using the errors and the curvatures. A task which requires a
correct approximation of the robot’s expected behavior for a given control input and state, which
might be too complicate to learn and is only approximating it in order to approach a low enough
objective value. But as seen, this can lead to unexpected output, such as the bang-bang control
strategy.

This means, an alternative approach to controlling the robot’s steering should be explored,
in order to lower the training difficulty, and obtain better performance. An approach to this,
would be combining both the existing control laws with a neural network, in order to augment
the controllers. This serves two purposed: The first is improving the control law directly, meaning
we should at least match the performance of the existing controllers. The second is to minimize
the training difficulty, as this means the neural network would only need to correct or alter the
existing control law, and not learn a control law from scratch.

Combining both the existing control laws with a neural network can be done in multiple ways.
The first way that is explored in the next chapter is simply adding the output of the neural network,
with the output of the existing control law, which can be seen as a corrective steering approach.

4.2 Corrective steer control [Delta NN ctrl]

As shown in the conclusion of the previous section, the replacement of existing control laws with
a neural network can lead to unexpected side effect, and does not significantly improve the per-
formance of the tracking task. As such, this chapter focuses on the hybridization of the control
system, to include both the control law and a neural network in order to improve the overall
performance of both. As with the previous chapter, the speed will be defined as a constant tar-
get speed, in order to compare the steering control independently to the speed control. The first

56
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

way for hybridization explored will be using the neural network’s output as a corrective term for
the steering angle, as detailed in the following section. Which will then be compared with the
previously shown methods.

Experimental setup

Control loop setup

The neural network predicts a corrective steering term, which is added to the output of the existing
control law, as shown in the figure 4.6 where the neural network takes the errors, curvature, and
speed, then returns the predicted corrective steering control output which is added to the steering
returned by the control law. The control law that is used in tandem is the Romea control law, as
it had the lowest error of both model predictive controllers. 5

Robot

Observer

Steer Controller
Trajectory

MeasuresState

+
Errors Steering

Optimizer

Delta NN ctrl

Errors, curva-
tures, speed

Objective
function

Target Speed
Steer diff

Parameters

Figure 4.6: Overview of the proposed method.

The neural network is trained in a simulation using the CMA-ES optimizer depicted as the
Optimizer in the figure 4.6, which takes the objective function value and returns the parameters.
The neural network takes as input the same information as an existing steering controller, which
is the lateral error, angular error, curvature, future curvature (20 sampled points over 5s horizon),
speed, and the robot’s steering state. And as control output the steering angle, with the speed
control output being defined as constant. An Extended Kalman Filter (EKF) [53] is used as the
Observer in order to filter the noise from the robot’s sensors, and improve the accuracy of the
tracking.

Metrics

The objective function used is identical to the previously defined first objective function, shown in
the equation (4.3).

obj1 = objerr + ksteerobjsteer

Integrating both the neural network and a steering controller in parallel does not alter the training
target, since both control tasks are the same.

The metric used in the analysis is identical to the previously defined surface error shown in the
equation (4.4).

Aerror =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)∣∣∣∣∣ ∆t

As it will allow for minimal bias when comparing the methods.

Training details

The neural network is trained over 5 unique trajectories (estoril5, estoril7, estoril910, line, and
spline5 as shown in A.12) twice with two varying scaling factors of 1 and 2 (this is done so longer
trajectories are also tested with lower curvatures), at speeds of 1.0, 2.0, 3.0, and 4.0 m.s−1, with
varying grip conditions (cornering stiffness ranging from 30000 to 7000).

5It should be noted, this choice is arbitrary and that this method is not limited to the Romea controller.

4.2. CORRECTIVE STEER CONTROL [DELTA NN CTRL] 57

Properties of the robuFAST experimental mobile platform depicted in section 5.3 are used
as parameters: a wheelbase of 1.2m, 430kg of weight, a max steering angle of 15◦, and a max
acceleration 0.5m.s−2

Simulated results

The trained method along with the baselines controllers, were tested in the simulation with the
same speeds, trajectories, and grip conditions as used in the training of the trained method. These
tests were run 100 times each in order to get a consistent mean and variation for each method.

The gains for the existing controllers are set to the same values defined in the section 4.1.

Quantitative Analysis

A first set of simulated runs was computed using the trajectories described in the appendix A.12.
From this, the table 4.5 was obtained. It describes the Surface error from the equation (4.4), for

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0
y

po
si

tio
n

- y
_p

os
 [m

]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 1.18 (±0.35) 1.40 (±0.63) 29.19 (±0.75) 2.37 (±1.27) 1.09 (±0.04)
EBSF 1.24 (±0.37) 1.46 (±0.70) 36.80 (±0.65) 2.64 (±1.16) 1.10 (±0.04)

NN controller 1.43 (±0.31) 2.42 (±0.60) 21.63 (±0.82) 3.94 (±1.08) 1.29 (±0.05)
Delta NN ctrl 1.30 (±0.22) 1.32 (±0.45) 20.68 (±1.02) 2.01 (±1.09) 1.48 (±0.02)

2m.s−1

Romea 1.54 (±0.50) 2.65 (±1.26) 33.42 (±0.79) 4.75 (±1.56) 1.12 (±0.06)
EBSF 1.55 (±0.50) 2.31 (±1.34) 39.75 (±0.84) 5.76 (±1.92) 1.11 (±0.06)

NN controller 2.10 (±0.33) 3.02 (±1.14) 18.30 (±0.74) 5.33 (±1.22) 1.64 (±0.06)
Delta NN ctrl 2.00 (±0.29) 2.48 (±1.06) 17.36 (±0.65) 4.36 (±1.41) 1.68 (±0.03)

3m.s−1

Romea 3.13 (±1.07) 5.96 (±1.50) 53.41 (±1.40) 9.59 (±1.27) 1.21 (±0.10)
EBSF 2.09 (±0.70) 3.54 (±1.35) 47.21 (±1.18) 14.88 (±1.91) 1.16 (±0.07)

NN controller 3.19 (±0.52) 3.55 (±1.20) 20.59 (±1.25) 5.78 (±1.31) 2.49 (±0.11)
Delta NN ctrl 2.47 (±0.51) 3.31 (±1.09) 17.97 (±0.71) 6.16 (±1.56) 1.27 (±0.07)

4m.s−1

Romea 4.31 (±1.49) 7.90 (±1.49) 55.82 (±2.54) 11.29 (±1.48) 1.28 (±0.17)
EBSF 3.59 (±0.92) 4.96 (±1.02) 51.97 (±2.33) 92.30 (±176.29) 2.15 (±0.25)

NN controller 6.60 (±1.42) 7.90 (±1.97) 28.53 (±3.25) 8.80 (±2.71) 4.87 (±0.85)
Delta NN ctrl 4.85 (±0.90) 6.88 (±1.13) 25.12 (±1.33) 9.55 (±1.91) 2.12 (±0.08)

Table 4.5: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 0m.

each method at all the speeds and trajectories used during the training, with an initial error of
0m. The underlined and bold values mean that the result is significant and has a p-value below
10−3, determined using the Welch-t test [81].

Overall, the average surface error for theDelta NN ctrl was noticeably lower than the previous
methods at 5.79m2, where as the surface error for Romea was 8.39m2 (a 31.0% reduction), and
the surface error for NN controller was 6.69m2 (a 13.4% reduction). From this table, more
specific strengths and weaknesses can be observed, the Delta NN ctrl was able to match or
exceed the performance of the existing controllers in some cases. Notably the estoril7, estoril910,
and the spline5 trajectories, where as it seems to struggle with estoril5 and the line trajectories.
Furthermore, it seems that the NN controller will outperform the Delta NN ctrl method on
the spline5 trajectory at higher speed, but overall it seems that the Delta NN ctrl method is
an iterative improvement over the NN controller method as it is able to match or exceed the
performance of the Romea controller over the estoril7 and estoril5 trajectories. As with the NN
controller method, when adding an initial lateral error of 1m at the start of the trajectories, the
Delta NN ctrl method is capable of impressive performance, as seen in table 4.6.

Overall, the average surface error for theDelta NN ctrl was noticeably lower than the previous
methods at 7.47m2, where as the surface error for Romea was 14.2m2 (a 47.6% reduction), and the
surface error for NN controller was 8.83m2 (a 15.4% reduction). From this table, more specific

58
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 4.42 (±0.36) 4.66 (±0.61) 32.44 (±0.76) 5.61 (±1.25) 4.35 (±0.08)
EBSF 6.19 (±0.37) 6.39 (±0.69) 41.76 (±0.65) 7.58 (±1.13) 6.04 (±0.06)

NN controller 3.59 (±0.31) 4.55 (±0.59) 23.75 (±0.81) 6.07 (±1.06) 3.42 (±0.10)
Delta NN ctrl 3.07 (±0.21) 3.09 (±0.45) 22.44 (±1.03) 3.78 (±1.07) 3.26 (±0.10)

2m.s−1

Romea 5.92 (±0.49) 7.07 (±1.25) 37.81 (±0.79) 9.03 (±1.55) 5.52 (±0.09)
EBSF 6.32 (±0.49) 7.07 (±1.32) 44.48 (±0.83) 10.46 (±1.92) 5.88 (±0.09)

NN controller 4.30 (±0.32) 5.12 (±1.14) 20.44 (±0.72) 7.44 (±1.20) 3.67 (±0.06)
Delta NN ctrl 3.65 (±0.29) 4.14 (±1.06) 19.02 (±0.66) 5.95 (±1.40) 3.31 (±0.08)

3m.s−1

Romea 11.19 (±1.11) 13.81 (±1.53) 61.53 (±1.40) 16.54 (±1.27) 9.21 (±0.14)
EBSF 7.75 (±0.72) 9.15 (±1.33) 52.84 (±1.16) 20.26 (±1.87) 6.80 (±0.11)

NN controller 5.44 (±0.50) 5.81 (±1.25) 22.64 (±1.19) 7.80 (±1.27) 4.59 (±0.13)
Delta NN ctrl 4.12 (±0.48) 4.97 (±1.09) 19.61 (±0.69) 7.79 (±1.57) 2.92 (±0.20)

4m.s−1

Romea 12.28 (±1.56) 15.62 (±1.52) 63.83 (±2.54) 18.37 (±1.43) 9.15 (±0.17)
EBSF 9.18 (±0.96) 10.48 (±0.98) 57.62 (±2.46) 91.77 (±165.52) 7.69 (±0.23)

NN controller 8.88 (±1.41) 9.94 (±1.78) 31.63 (±5.14) 10.47 (±2.59) 7.19 (±0.92)
Delta NN ctrl 6.50 (±0.94) 8.51 (±1.17) 26.77 (±1.33) 11.15 (±2.00) 3.73 (±0.09)

Table 4.6: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

strengths and weaknesses can be observed, the Delta NN ctrl was able to exceed the performance
of the existing controllers in all of the tested cases, with the exception of the line trajectory which
can be explained as the neural network over-reacting to the system noise, when a constant steering
of 0◦ is required to get the best score. Furthermore, the Delta NN ctrl consistently outmatched
the NN controller , with the exception once more of the spline5 trajectory at high speeds.

Qualitative Analysis

When focusing with a qualitative analysis over the spline5 trajectory, at 2m.s−1 with 1m of
initial error, the following results are obtained. Figure 4.7 shows the same behavior as previously

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

5

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Delta NN ctrl

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

NN controller
Romea controller
Delta NN ctrl

Figure 4.7: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

described. The reactivity of the initial lateral error is very high, as the Delta NN ctrl quickly
converges to the trajectory, and is able to reduce the lateral error once converged when compared
to the Romea controller.

This result is quite clear on the objective function and surface error from figure 4.8, as theDelta
NN ctrl is able to minimize the large initial penalty, all while preserving a low rate of change of
said objective function and surface error, which implies a low overall error after convergence.

The NN controller showed some worrying behavior on the steering angle, which is reduced
when the neural network is used as a corrective method, rather than a replacement to existing
control laws. This implies that the reduction of training difficulty inherit to this method, was a
determining factor in the performance of the trained neural network. Indeed, as shown in figure 4.9

4.2. CORRECTIVE STEER CONTROL [DELTA NN CTRL] 59

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

2

4

6

Su
rfa

ce
 E

rro
r -

 [m
2]

NN controller
Romea controller
Delta NN ctrl

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

NN controller
Romea controller
Delta NN ctrl

Figure 4.8: On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

st
at

e
-

f [
de

g]

Romea controller
Delta NN ctrl

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

co
nt

ro
l -

 u
f [

de
g]

Romea controller
Delta NN ctrl

Figure 4.9: On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa.

the capacity of the neural network to correct the initial error from 0 ≤ s ≤ 5, while not resorting
to a bang-bang control strategy as seen by the NN controller , along with the lower overall error
shows that the resulting neural network is able to reach high performance compared to the NN
controller .

Feature importance

In order to better interpret and understand the neural network, a gradient based Feature impor-
tance analysis can be used to determine which inputs where useful, and quantify the utility of
each input with respect to each output. See section A.4 for details on the theory and implementa-
tion of the gradient based Feature importance analysis for the neural network. Using the Feature
importance analysis, the following results are obtained:

y
[m

]

d
/dt

 [r
ad

. s
1]

dy
/dt

 [m
. s

1]

 [r
ad

]
fut

ur
e c(s

) [m
1]

F [
ra

d]

v
[m

. s
1]

c(s
) [m

1]

ct
rl,

F [
ra

d]

0

5

10

15

20

25

%
 Im

po
rta

nc
e

uniform importance
D_DELTA_F

Figure 4.10: The feature importance for the Delta NN ctrl method for each input, denoted in
% of importance.

From the figure 4.10, the inputs that contribute the most the corrective steering output of
the method are in order of importance the lateral error denoted y, the rate of change of the
angular error denoted dθ̃/dt, the rate of change of the lateral error denoted dy/dt, the angular
error denoted θ̃ , and the future curvature denoted future c(s) which all contribute a total of at
least 80% of the variations of the corrective steering output. The control steering output denoted

60
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

δctrl,F is significantly below the expected importance for a uniform importance distribution, which
surprisingly implies that it is not significant for the output. This can be explained as the neural
network using the other inputs in order to predict the expected output of the control law.

This shows that the Delta NN ctrl is correcting the control output in a similar manner to
the NN controller , with a higher emphasis on the rate of change of the errors and the future
curvature. This implies that the Delta NN ctrl is using these inputs in order to better adapt
the control output of the existing controller, as the neural network has determined that they are
underused by the controller law due to its inclusion even though the existing controller is already
exploiting them.

Analysis of the approach

Overall the Delta NN ctrl has shown promising results, as it is able to obtain a better behavior
and higher performance using this configuration, when compared to the previous NN controller .
Indeed, it is able to follow the same trajectories as the MPC alone, with similar performance while
being able to adapt the control output in order to compensate for strong initial errors, and to lower
the overall error.

As such, this configuration of corrective steering is indeed a promising method. However, it is
not the only method of adapting a control law using a neural network.

4.3 Online control parameter tuning for existing steer controller [NN
gain tuner]

The controllers are configured using their control parameters, which often depend on the changes
in the set-points and environment such as the trajectory, including speed, for path following tasks.

Figure 4.11: Example of sources of influence on the optimal control parameters. Left: wheel,
actuator dynamics. Middle: GPS sensor, perception quality. Right: ground, environment.

It will also depend on the perception quality (such as a GPS or a LIDAR accuracy, figure 4.11),
and it will depend on the highly dynamic nature of the system (such as the actuator properties)
as much as on the environment characteristics (such as the tyre-ground interface, figure 4.11).
All these aspects must be taken into account for an ideal performance, when the environment is
changing over time. As an initial example, the NN gain ctrl method will only be given the same
inputs as the previous example in order to preserve the comparability with the previous methods.

When comparing with Delta NN ctrl , the NN gain ctrl method has a few key differences.

• Preserving existing systems: The system can remain the same, but the controller’s behavior
is altered in real time in order to improve it’s performance and adaptability. As such, it can
be added as a ”drop-in” improvement to existing in-situ control system.

• The neural network no longer needs to predict the controller: This lowers even further the
training difficulty, as the expected behavior of the controller on the system is no longer needed
in order to determine an accurate corrective term. Whereas the parameter tuning approach
requires only the expected behavior of the system and the controller together, which is often
simpler.

4.3. ONLINE CONTROL PARAMETER TUNING FOR EXISTING STEER CONTROLLER
[NN GAIN TUNER] 61

• Isolation of the neural network from the control output: this approach will not require direct
control of the robot, which means that the failure cases are reduced substantially and the
predictability of the system increases as the potential impact of the neural network to the
system is theoretically reduced. However, by removing direct control to the steering control
output, this method might sacrificing potential performance, as the controller might not be
able to reach a desired configuration from tuning the control parameters alone.

• Permitting deterministic behavior: By only modulating the control parameters through a
neural network, a high degree of explainability and deterministic behavior can be preserved,
which can be an important consideration for industrial use or certification of the system.

• Visible failure case: The range of valid control parameters can be estimated, meaning a
failure case where the neural network predicts invalid control parameters can be foreseen and
corrected, preventing potential loss of control in safety sensitive systems.

Before tuning the control parameters, an understanding of what control parameters are needed
in order to correctly interpret and analyze the behavior of the robot from modulating the control
parameters. A brief explanation of control parameters and control parameters tuning is as such
described in the following section.

Control parameter tuning

Control parameters

Integrating the full state of the system and all the sensor information into a control law is not a
simple task, as it can be relatively hard to qualify how a controller should react to the perceived
information in full detail. Usually, controllers are tuned for a given environmental state, and this
tuning encodes the unmodeled aspects of the controller. This tuning is defined as the control
parameters of a controller.

The control parameters are values that define the reactivity of the controller to specific state
variables. They are defined as the control effort relative to the error, in terms of time or distance to
convergence. They are usually set so the controller is critically damped, and so that the controller
will quickly converge to the set point, but not overshoot too much or oscillate.

With this, ideal control parameters would then tune the controller to obtain a fast convergence
to the set point, a non-oscillatory control, and to minimize the control errors overall.

Constant control parameters

Finding the ideal control parameters has been a major subject of research in optimal control
theory. As such many methods exist in order to find the optimal fixed control parameters for a
given environment, here are a few examples:

• Empirical tuning by hand, where an expert tunes the controller by trial and error, in order
to obtain the desired behavior.

• Algorithmic methods (e.g.: Ziegler–Nichols), where an algorithm breaks down the tuning
into simpler step-by-step adjustments, until the desired behavior is obtained [82].

• A black box optimizer in a simulation, where the ideal tuning is obtained when a target
metric has reached its local minimum [83].

However as described previously, the optimal control parameters will depend on the changes in
the environment, as such a dynamic parameter tuning method will be used.

Dynamic control parameters

The adjustment of the control parameters, in real time over the course of the control task, will be
called dynamic control parameters tuning. For this, two common classes of methods exist.

The first is fuzzy logic control parameters scheduling, the second is LQR (Linear Quadratic
Regulator) control parameters optimization.

62
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

Fuzzy logic control parameters scheduling [84, 85, 86], is a method that determines when a
change in control parameters should occur, then once a change occurs it changes the current control
parameters to a predefined parameters for that environmental state. This method implies that all
the environmental states have been mapped to the fuzzy logic, and that each control parameter has
been tuned for that specific environmental state. This task can increase time used for the control
parameters tuning task by an order of magnitude; as multiple fixed control parameters need to be
tuned for each possible environmental state.

LQR control parameters optimization [87, 88] uses a linear-quadratic regulator with a model
of the environment, in order to tune the control parameters in real time. This method seems
like an ideal contender as it can determine in real time the ideal control parameters. However,
the drawback of this system is that the model of the environment that is used must be very well
defined in order to get an accurate enough prediction. Furthermore, the LQR method depends on
linearization of the model over future timesteps, which can be both inaccurate and computationally
expensive.

A zoo of control parameters tuning methods have been proposed. However the key aspect
that is targeted is the adaptability of the control parameters tuning, while keeping the controller
explainable. This is unfortunately a trade-off between explainability vs adaptability:

Adaptability

Fixed Discrete Non-Linear

Explainability

Only
experimentally

Only bound
and derivative

Only by value

Expert 1

2 3, 4

5

6, 7

• 1: Expert tuned parameters

• 2: Optimizer tuned parameters

• 3: Fuzzy scheduling

• 4: Learnt state parameters scheduling

• 5: RL control parameters tuning

• 6: Pure RL controller

• 7: LQR parameters tuning

: Pareto line

Figure 4.12: Explainability and adaptability compromise in control parameter tuning for con-
trollers.

The trade-off can be see on the figure 4.12, with the following definition for each class of
methods:

• Expert tuned parameters: A constant control parameters, tuned by an expert for a given
task. Explainable by the expert.

• Optimizer tuned parameters: A constant control parameters, tuned by an optimization algo-
rithm for a given task [83]. Explainable by analyzing the behavior of the control parameters
in the system.

• Fuzzy scheduling: A set of constant control parameters, changing according to the environ-
ment using fuzzy logic [84, 85, 86]. Explainable by analyzing the behavior of each control
parameters in the system.

• Learned state parameters scheduling: A set of constant control parameters, changing accord-
ing to the environment using a machine learning method such as DQN [19]. Explainable by
analyzing the behavior of each control parameters in the system.

• RL control parameters tuning: Reinforcement learning algorithm to tune control parameters
depending on the state (as depicted in section 4.3). Explainable through the bounds and the
variations of the control parameters.

• Pure RL controller: Replace the control system by a reinforcement learning algorithm. Ex-
plainable through experimentation alone (as depicted in section 4.1 and in [24]).

4.3. ONLINE CONTROL PARAMETER TUNING FOR EXISTING STEER CONTROLLER
[NN GAIN TUNER] 63

• LQR parameters tuning: linear-quadratic regulator to tune control parameters depending on
the state and the predicted future state [87, 88]. Explainable through experimentation alone.

Here, a continuous control parameters output is considered more adaptable than discrete values, as
the continuous methods used to output the control parameters will try and generalize in between
the two discrete values that a discrete method would output. This implies a more adaptable and
continuous transition between two control parameters.

These aspects show that using a neural network trained using reinforcement learning is valid
for a continuous real-time controller parameter tuning method. As such, the following sections
describe the application of the neural network as a controller parameter tuning method, and the
performance of said method when compared to the previous methods shown.

Experimental setup

Control loop setup

The neural network predicts the control parameters in real-time. In this case they are the steering
gains and steering horizon, which are then passed to the controller before the controller calculates
the steering angle. As shown in the figure 4.13 where the neural network takes the errors, curvature,
and speed, then returns the steering gains and steering horizon. The control law that is used in
tandem is the Romea control law, in order to preserve the comparability with the previous methods.

Robot

Observer

Steer Controller
Trajectory

Errors Steering

MeasuresState

Optimizer

NN gain tuner

Errors, curva-
tures, speed

Objective
function

Target SpeedSteer Gains,
horizon

Parameters

Figure 4.13: Overview of the proposed method.

The neural network is trained in a simulation using the CMA-ES optimizer depicted as the
Optimizer in the figure 4.13, which takes the objective function value and returns the parameters.
The neural network takes as input the same information as an existing steering controller, which
is the lateral error, angular error, curvature, future curvature (20 sampled points over 5s horizon),
speed, and the robot’s steering state. And it outputs the control parameters. The speed is defined
as constant before the path following. An Extended Kalman Filter (EKF) [53] is used as the
Observer in order to filter the noise from the robot’s sensors, and improve the accuracy of the
tracking.

Metrics

The objective function used is identical to the previously defined first objective function, shown in
the equation (4.3).

obj1 = objerr + ksteerobjsteer

Integrating the neural network as a control parameter tuner for the steering controller does not
alter the training target, since both control tasks are the same, which is to steer the robot.

The metric used in the analysis is identical to the previously defined surface error shown in the
equation (4.4).

Aerror =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)∣∣∣∣∣ ∆t

As it will allow for minimal bias when comparing the methods.

64
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

Training details

The neural network is trained over 5 unique trajectories (estoril5, estoril7, estoril910, line, and
spline5 as shown in A.12) twice with two varying scaling factors of 1 and 2 (this is done so longer
trajectories are also tested with lower curvatures), at speeds of 1.0, 2.0, 3.0, and 4.0 m.s−1, with
varying grip conditions (cornering stiffness ranging from 30000 to 7000).

Properties of the robuFAST experimental mobile platform are used as parameters: a wheelbase
of 1.2m, 430kg of weight, a max steering angle of 15◦, and a max acceleration 0.5m.s−2

Simulated results

The trained method along with the baselines controllers, were tested in the simulation with the
same speeds, trajectories, and grip conditions as used in the training of the trained method. These
tests were run 100 times each in order to get a consistent mean and variation for each method.

The gains for the existing controllers are set to the same values defined in the section 4.1.

Quantitative Analysis

A first set of simulated runs was computed using the trajectories described in the appendix A.12.
From this, the table 4.7 was obtained. It describes the surface error from the equation (4.4), for

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 1.18 (±0.35) 1.40 (±0.63) 29.19 (±0.75) 2.37 (±1.27) 1.09 (±0.04)
EBSF 1.24 (±0.37) 1.46 (±0.70) 36.80 (±0.65) 2.64 (±1.16) 1.10 (±0.04)

NN controller 1.43 (±0.31) 2.42 (±0.60) 21.63 (±0.82) 3.94 (±1.08) 1.29 (±0.05)
Delta NN ctrl 1.30 (±0.22) 1.32 (±0.45) 20.68 (±1.02) 2.01 (±1.09) 1.48 (±0.02)
NN gain tuner 1.16 (±0.23) 1.37 (±0.51) 19.78 (±1.97) 2.00 (±1.29) 1.17 (±0.03)

2m.s−1

Romea 1.54 (±0.50) 2.65 (±1.26) 33.42 (±0.79) 4.75 (±1.56) 1.12 (±0.06)
EBSF 1.55 (±0.50) 2.31 (±1.34) 39.75 (±0.84) 5.76 (±1.92) 1.11 (±0.06)

NN controller 2.10 (±0.33) 3.02 (±1.14) 18.30 (±0.74) 5.33 (±1.22) 1.64 (±0.06)
Delta NN ctrl 2.00 (±0.29) 2.48 (±1.06) 17.36 (±0.65) 4.36 (±1.41) 1.68 (±0.03)
NN gain tuner 1.54 (±0.31) 2.08 (±1.07) 16.99 (±1.46) 3.21 (±1.57) 1.32 (±0.06)

3m.s−1

Romea 3.13 (±1.07) 5.96 (±1.50) 53.41 (±1.40) 9.59 (±1.27) 1.21 (±0.10)
EBSF 2.09 (±0.70) 3.54 (±1.35) 47.21 (±1.18) 14.88 (±1.91) 1.16 (±0.07)

NN controller 3.19 (±0.52) 3.55 (±1.20) 20.59 (±1.25) 5.78 (±1.31) 2.49 (±0.11)
Delta NN ctrl 2.47 (±0.51) 3.31 (±1.09) 17.97 (±0.71) 6.16 (±1.56) 1.27 (±0.07)
NN gain tuner 2.19 (±0.52) 3.00 (±1.32) 19.33 (±1.34) 5.49 (±2.87) 1.45 (±0.11)

4m.s−1

Romea 4.31 (±1.49) 7.90 (±1.49) 55.82 (±2.54) 11.29 (±1.48) 1.28 (±0.17)
EBSF 3.59 (±0.92) 4.96 (±1.02) 51.97 (±2.33) 92.30 (±176.29) 2.15 (±0.25)

NN controller 6.60 (±1.42) 7.90 (±1.97) 28.53 (±3.25) 8.80 (±2.71) 4.87 (±0.85)
Delta NN ctrl 4.85 (±0.90) 6.88 (±1.13) 25.12 (±1.33) 9.55 (±1.91) 2.12 (±0.08)
NN gain tuner 3.58 (±1.24) 4.89 (±1.81) 26.43 (±4.40) 10.17 (±6.09) 1.76 (±0.18)

Table 4.7: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 0m.

each method at all the speeds and trajectories used during the training, with an initial error of
0m. The underlined and bold values mean that the result is significant and has a p-value below
10−3, determined using the Welch-t test [81].

Overall, the average surface error for the NN gain tuner was noticeably lower than the
previous methods at 4.98m2, where as the surface error for Romea was 8.39m2 (a 40.7% reduction),
the surface error for NN controller was 6.69m2 (a 25.6% reduction), and the surface error for
Delta NN ctrl was 5.79m2 (a 14.0% reduction). From this table, more specific strengths and
weaknesses can be observed, the NN gain tuner was able to match or exceed the performance
of the existing controllers in most cases. Notably the estoril7, estoril910, spline5, and the estoril5
trajectories, where as it seems to struggle with the line trajectory as did the previous methods.

4.3. ONLINE CONTROL PARAMETER TUNING FOR EXISTING STEER CONTROLLER
[NN GAIN TUNER] 65

The differences over the line trajectory can be interpreted due to the sensitivity of the proposed
methods with respect to the noise, indeed the line trajectory is a simple task (requiring that only
that δf = 0 in order to be solved optimally), and as such any noise would be overcompensated which
degrades the overall performance. Furthermore, it seems that the NN gain tuner will outperform
the Delta NN ctrl and NN controller methods on the estoril5 and estoril7 trajectories, but
remain comparable on the estoril910 and spline5 trajectories. Overall it seems that the NN gain
tuner method is an iterative improvement over the NN controller method, and is comparable to
the Delta NN ctrl as it is able to match or exceed the performance of the Romea controller. As
with the NN controller and Delta NN ctrl methods, when adding an initial lateral error of 1m
at the start of the trajectories, the NN gain tuner method is capable of impressive performance,
as seen in table 4.8.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 4.42 (±0.36) 4.66 (±0.61) 32.44 (±0.76) 5.61 (±1.25) 4.35 (±0.08)
EBSF 6.19 (±0.37) 6.39 (±0.69) 41.76 (±0.65) 7.58 (±1.13) 6.04 (±0.06)

NN controller 3.59 (±0.31) 4.55 (±0.59) 23.75 (±0.81) 6.07 (±1.06) 3.42 (±0.10)
Delta NN ctrl 3.07 (±0.21) 3.09 (±0.45) 22.44 (±1.03) 3.78 (±1.07) 3.26 (±0.10)
NN gain tuner 2.98 (±0.23) 3.19 (±0.51) 21.59 (±1.98) 3.83 (±1.26) 3.00 (±0.10)

2m.s−1

Romea 5.92 (±0.49) 7.07 (±1.25) 37.81 (±0.79) 9.03 (±1.55) 5.52 (±0.09)
EBSF 6.32 (±0.49) 7.07 (±1.32) 44.48 (±0.83) 10.46 (±1.92) 5.88 (±0.09)

NN controller 4.30 (±0.32) 5.12 (±1.14) 20.44 (±0.72) 7.44 (±1.20) 3.67 (±0.06)
Delta NN ctrl 3.65 (±0.29) 4.14 (±1.06) 19.02 (±0.66) 5.95 (±1.40) 3.31 (±0.08)
NN gain tuner 3.21 (±0.31) 3.78 (±1.06) 18.68 (±1.51) 5.14 (±1.57) 3.05 (±0.10)

3m.s−1

Romea 11.19 (±1.11) 13.81 (±1.53) 61.53 (±1.40) 16.54 (±1.27) 9.21 (±0.14)
EBSF 7.75 (±0.72) 9.15 (±1.33) 52.84 (±1.16) 20.26 (±1.87) 6.80 (±0.11)

NN controller 5.44 (±0.50) 5.81 (±1.25) 22.64 (±1.19) 7.80 (±1.27) 4.59 (±0.13)
Delta NN ctrl 4.12 (±0.48) 4.97 (±1.09) 19.61 (±0.69) 7.79 (±1.57) 2.92 (±0.20)
NN gain tuner 3.89 (±0.54) 4.76 (±1.32) 20.92 (±1.40) 7.28 (±2.97) 3.18 (±0.23)

4m.s−1

Romea 12.28 (±1.56) 15.62 (±1.52) 63.83 (±2.54) 18.37 (±1.43) 9.15 (±0.17)
EBSF 9.18 (±0.96) 10.48 (±0.98) 57.62 (±2.46) 91.77 (±165.52) 7.69 (±0.23)

NN controller 8.88 (±1.41) 9.94 (±1.78) 31.63 (±5.14) 10.47 (±2.59) 7.19 (±0.92)
Delta NN ctrl 6.50 (±0.94) 8.51 (±1.17) 26.77 (±1.33) 11.15 (±2.00) 3.73 (±0.09)
NN gain tuner 5.26 (±1.30) 6.60 (±1.82) 27.40 (±3.52) 11.56 (±5.80) 3.44 (±0.20)

Table 4.8: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

Overall, the average surface error for the NN gain tuner was noticeably lower than the previ-
ous methods at 6.70m2, where as the surface error for Romea was 14.2m2 (a 53.0% reduction), the
surface error for NN controller was 8.83m2 (a 24.1% reduction), and the surface error for Delta
NN ctrl was 7.47m2 (a 10.3% reduction). From this table, more specific strengths and weak-
nesses can be observed, the NN gain tuner was able to exceed the performance of the existing
controllers in all of the tested cases. Furthermore, the NN gain tuner consistently outmatched
the previous methods over the estoril5 and estoril7 trajectories, while being comparable to Detla
NN ctrl over the estoril910, spline5, and line trajectories.

Qualitative Analysis

When focusing with a qualitative analysis over the spline5 trajectory, at 2m.s−1 with 1m of
initial error, the following results are obtained. Figure 4.14 shows the same behavior as previously
described. The reactivity of the initial lateral error is very high, as the NN gain tuner quickly
converges to the trajectory, and is able to significantly reduce the lateral error once converged
when compared to the previously described methods.

This result is quite clear on the objective function and surface error from figure 4.15, as the
NN gain tuner is able to minimize the large initial penalty, all while obtaining a very low rate

66
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

5

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Delta NN ctrl
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

NN controller
Romea controller
Delta NN ctrl
NN gain tuner

Figure 4.14: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

2

4

6

Su
rfa

ce
 E

rro
r -

 [m
2]

NN controller
Romea controller
Delta NN ctrl
NN gain tuner

Figure 4.15: On the left: The surface error over the curvilinear abscissa. On the right: The
objective function over the curvilinear abscissa.

of change of said objective function and surface error, which implies a very low overall error after
convergence. The Romea controller is not very comparable on this figure due to the difference in
the initial error, however it’s rate of change seems close to the NN gain tuner method (as shown
in the orange dashed line on figure 4.15), and indeed this is confirmed with the surface error, where
the Romea controller has a slightly higher rate of change of the error when compared to the NN
gain tuner , which implies that without the initial error, the NN gain tuner would likely out
perform the other methods.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

st
at

e
-

f [
de

g]

Romea controller
Delta NN ctrl
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

co
nt

ro
l -

 u
f [

de
g]

Romea controller
Delta NN ctrl
NN gain tuner

Figure 4.16: On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa.

The previously shown methods had some oscillatory behavior on the steering angle. However, as
illustrated in figure 4.16 the steering controller’s output is very stable when a neural network is used
to tune the control parameters in real time, when compared to the Delta NN ctrl . Furthermore,
the modulation of the control parameters allows for the controller to quickly converge to the desired
setpoint, similarly to when the neural network was modulating the steering output directly. This
shows that for this controller, the control parameter tuning can allow for similar corrective behavior
as seen previously, all while being isolated from the direct steering control.

As the neural network is only modulating the control parameters, this means that the desired
behavior is encoded in said control parameters. Figure 4.17 shows these control parameters.

First for the control gains, the gains seem very high initially due to the initial lateral error, with
increases visible at each sharp transition of the curvature at 15 ≤ s ≤ 25, 30 ≤ s ≤ 35, 45 ≤ s ≤ 55,
and 60 ≤ s ≤ 65 in order to keep the lateral error low during said corners. Furthermore, the

4.3. ONLINE CONTROL PARAMETER TUNING FOR EXISTING STEER CONTROLLER
[NN GAIN TUNER] 67

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp

Romea controller
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

H
or

iz
on

 -
H

 [s
]

Romea controller
NN gain tuner

Figure 4.17: On the left: The gains over the curvilinear abscissa. On the right: The horizon over
the curvilinear abscissa.

dampening of the controller denoted ξ is also visible, where the dampening is quite low in general
at around 0.5, except during transitional states such as the corners and initial error, which seems
to suggest that the neural network is increasing the reactivity of the control law during the stable
states, while reducing it when it could lead to oscillatory or dangerous behavior. This allows the
neural network and controller to correct any minor errors during she steady states very quickly,
while still being stable and smooth when a transition occurs.

The second aspect of the control parameters is the horizon of the predictive section of the
controller. Figure 4.17 shows that the horizon is quite low in general, implying that the neural
network does not want the controller to react too early to the curvature. However, when a corner
approaches, the neural network substantially increases the horizon at s = 12 and s = 42. Interest-
ingly this happens to be approximately 3m before the first and second corner respectively which
shows that the neural network is not overriding the predictive nature of the controller. It can be
supposed that the neural network is reducing the horizon when it is not necessary, in order to
prevent the controller reacting too strongly to any noise or abnormalities in the curvature, which
allows for higher control gains when possible, and as such an overall better path following strategy.

Feature importance

In order to better interpret and understand the neural network, a gradient based Feature impor-
tance analysis can be used to determine which inputs where useful, and quantify the utility of
each input with respect to each output. See section A.4 for details on the theory and implementa-
tion of the gradient based Feature importance analysis for the neural network. Using the Feature
importance analysis, the following results are obtained:

d
/dt

 [r
ad

. s
1]

dy
/dt

 [m
. s

1]

y
[m

]

 [r
ad

]

c(s
) [m

1]
fut

ur
e c(s

) [m
1]

F [
ra

d]

v
[m

. s
1]

ct
rl,

F [
ra

d]

0

10

20

30

40

%
 Im

po
rta

nc
e

uniform importance
KP
KD
HORIZON

Figure 4.18: The feature importance for the NN gain tuner method for each input, denoted in
% of importance.

From the figure 4.18, the inputs that contribute the most the outputs of the NN gain tuner
method are in order of importance the rate of change of the angular error denoted dθ̃/dt, the rate
of change of the lateral error denoted dy/dt, the lateral error denoted y, the angular error denoted
θ̃, the immediate curvature denoted c(s), the angular error denoted θ̃, and the future curvature
denoted future c(s) which all contribute a total of at least 80% of the variations of the outputs of
the NN gain tuner method. The control steering output denoted δctrl,F and the speed denoted

68
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

v are significantly below the expected importance for a uniform importance distribution over the
gains Kp & Kd, which implies that they are not significant for the outputed gains. However the
importance of the inputs with respect to the horizon seems uniform with a noticeable exception
for the steering inputs, which implies that most of the inputs are useful for predicting the horizon,
which in turn demonstrates a considerable complexity for predicting the horizon.

This shows that the NN gain tuner is correcting the control gains output in a similar manner
to the Delta NN ctrl . However, it is specializing its variations in a consistent manner to the
expected theory of the control law, as the Kd gain varies mostly with the rate of change of the
angular error and the angular error, the Kp gain varies mostly with the rate of change of the lateral
error and the lateral error, and the control horizon varies with most of the inputs. It is strongly
implied that the NN gain tuner is able to reach higher performance than Delta NN ctrl thanks
to this specialization, which leads to simplified control outputs when compared to controlling the
steering output directly. Furthermore it is likely that the tuning the gains allows for a predictable
and targeted correction, which is a simpler task than predicting the control output of the existing
controller in order to correct it.

Validation of the results over test trajectories

In order to validate the results shown previously, additional tests need to be run in conditions
that were not present during the training phase. This is done to verify that the method has not
over-fitted to the training set, and has indeed generalized to novel situations.

The following tables show the mean surface error generated by each method over multiple runs
for each speed with varying grip conditions (CR & CF from 7000 to 30000 N.rad−1), with GPS
losses, and with testing trajectory (i.e. outside the training dataset):

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

1m.s−1

Romea 5.06 (±0.81) 2.40 (±0.54) 2.59 (±0.45)
EBSF 7.53 (±0.81) 2.70 (±0.55) 2.87 (±0.56)

NN controller 8.24 (±0.77) 2.45 (±0.54) 1.83 (±0.50)
Delta NN ctrl 4.77 (±0.72) 1.55 (±0.42) 1.87 (±0.37)
NN gain tuner 6.01 (±0.86) 1.93 (±0.39) 1.85 (±0.41)

2m.s−1

Romea 7.67 (±1.12) 4.38 (±1.01) 4.13 (±0.93)
EBSF 10.01 (±1.76) 3.71 (±0.94) 3.76 (±0.96)

NN controller 7.39 (±1.09) 3.36 (±0.82) 2.76 (±0.82)
Delta NN ctrl 6.49 (±1.05) 3.26 (±0.87) 2.66 (±0.80)
NN gain tuner 9.03 (±1.65) 3.07 (±0.66) 2.46 (±0.80)

3m.s−1

Romea 16.16 (±2.01) 10.24 (±2.06) 9.26 (±2.00)
EBSF 27.48 (±6.62) 5.74 (±1.54) 5.61 (±1.52)

NN controller 32.11 (±5.12) 5.01 (±0.89) 4.58 (±1.34)
Delta NN ctrl 10.71 (±1.91) 5.64 (±1.34) 3.79 (±1.07)
NN gain tuner 15.17 (±4.44) 5.17 (±1.10) 3.17 (±1.22)

4m.s−1

Romea 22.03 (±4.43) 13.11 (±2.81) 11.97 (±3.17)
EBSF 64.05 (±9.72) 7.81 (±1.93) 7.78 (±1.62)

NN controller 51.33 (±18.73) 9.42 (±1.97) 8.67 (±2.24)
Delta NN ctrl 26.54 (±7.93) 10.48 (±1.73) 6.50 (±1.30)
NN gain tuner 38.82 (±10.67) 8.33 (±2.23) 4.49 (±2.28)

Table 4.9: Surface error in [m2] of each method at all the speeds used during training, over novel
test trajectories, with an initial error of 0m

As shown in table 4.9, similar results are obtained when compared to the previous table 4.7 as
the Delta NN ctrl can obtain good performance and is comparable with the NN gain tuner .
However, an unusual behavior occurs over estoril1 2, which shows the Romea controller obtaining
good results. When observing the curvature of estoril1 2 in section A.12, high oscillations can be
observer, and when a low pass filtering is placed, then the performance of the NN gain tuner

4.3. ONLINE CONTROL PARAMETER TUNING FOR EXISTING STEER CONTROLLER
[NN GAIN TUNER] 69

increases dramatically. This shows an interesting limitation of the method, as it is significantly
sensitive to the quality of the curvature (suspected due to a sub-sampling issue over the future
curvature), and large swings can cause significant errors. However, these curvatures are unlikely
to occur in general with such swings in values, which makes this issue unlikely but possible.

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

1m.s−1

Romea 8.35 (±0.74) 5.70 (±0.53) 5.94 (±0.42)
EBSF 12.55 (±0.81) 7.61 (±0.56) 8.06 (±0.48)

NN controller 9.98 (±0.73) 4.58 (±0.54) 3.97 (±0.48)
Delta NN ctrl 6.05 (±0.76) 3.36 (±0.42) 3.69 (±0.37)
NN gain tuner 8.17 (±0.82) 3.78 (±0.39) 3.70 (±0.41)

2m.s−1

Romea 12.41 (±1.03) 8.79 (±1.01) 8.64 (±0.90)
EBSF 14.54 (±1.80) 8.48 (±0.92) 8.58 (±0.96)

NN controller 9.59 (±1.05) 5.44 (±0.81) 4.78 (±0.79)
Delta NN ctrl 8.31 (±1.09) 4.91 (±0.89) 4.30 (±0.80)
NN gain tuner 10.66 (±1.56) 4.78 (±0.67) 4.28 (±0.77)

3m.s−1

Romea 24.43 (±2.06) 18.08 (±2.00) 17.57 (±1.93)
EBSF 32.28 (±6.60) 11.35 (±1.45) 11.32 (±1.45)

NN controller 33.05 (±4.96) 7.15 (±0.89) 6.70 (±1.29)
Delta NN ctrl 12.38 (±1.76) 7.34 (±1.33) 5.44 (±1.06)
NN gain tuner 18.80 (±5.18) 6.90 (±1.09) 5.00 (±1.19)

4m.s−1

Romea 30.16 (±4.17) 20.75 (±2.76) 20.03 (±3.04)
EBSF 68.43 (±9.58) 13.32 (±1.84) 13.38 (±1.58)

NN controller 51.59 (±18.13) 11.65 (±2.02) 10.79 (±2.16)
Delta NN ctrl 28.23 (±7.97) 12.19 (±1.75) 8.20 (±1.29)
NN gain tuner 42.67 (±12.10) 10.12 (±2.28) 6.24 (±2.25)

Table 4.10: Surface error in [m2] of each method at all the speeds used during training, over novel
test trajectories, with an initial error of 1m

The table 4.10, shows similar results to the ones obtained when compared to the previous
table 4.8 as the NN gain tuner is able to outperform most of the methods most of the time.
However the same issue occurs as well over the estoril1 2 trajectory as shown previously.

These results show that the method is capable of obtaining comparable performance when
tested over novel trajectories that are not part of the training environment.

Analysis of the approach

Overall it seems that the NN gain tuner is able to reach similar and in some cases better
performance when compared to the Delta NN ctrl method for this controller, which implies this
method has the highest performance as of yet, making this method a strong candidate for adapting
the robot’s behavior in real time.

The NN gain tuner method also allows for an in depth analysis of the control parameters as
shown previously, which gives insight into the choices and strategies being employed by the neural
network, as it is much easier to interpret control parameters when compared to interpreting control
signals directly such as the steering angle.

However, the NN gain tuner does not assume direct control of the steering control output,
this would imply sacrificing potential performance, but this was not shown here. It should be
noted that, it is possible to design a controller that can demonstrate this effect, for example using
a proportional steering controller, as it would not be able to easily correct any angular error, which
can lead to some difficult control-ability situations when the lateral error is close to 0. As such this
method must be tested for any controller in order to show that NN gain tuner does outperform
or match the performance of the previously shown methods for any said controller.

Nonetheless, this result is quite curious as existing control parameter tuning methods do exist
and are able to adapt the behavior of existing controllers without resorting to using neural networks

70
CHAPTER 4. APPLYING REINFORCEMENT LEARNING FOR ROBOTIC STEER

CONTROL

or machine learning. Fundamentally it would be scientifically dishonest to not compare said meth-
ods to the NN gain tuner method, as these methods might outperform the NN gain method. As
such, the following chapter will develop and compare a deterministic control parameter method,
with the previously shown NN gain tuner method.

Chapter 5

Gain tuning in dynamic context

The design of a deterministic model-based gain tuning method can be quite difficult, as it corre-
sponds to the approximation of the control gain parameters, based on robot model. As such, not
only a more detailed model is needed than the one used to design the controller, but also additional
information is needed in order to exploit said model. As such, the deterministic control Romea
exploit two observer to account for sideslip angles and varying grip conditions. The output of these
observer (sideslip angles and cornering stiffness), feeding the steering control law, may also be used
to determine the settling time for the robot to reach a desired yaw rate. As a result, one can deduce
from these variables a settling distance for the robot to reach the trajectory, allowing to tune the
gain and horizon of prediction accordingly. From these dynamic observers, the dynamic model
described in section 2.3 can indeed be used in order to determine such as hereafter described.

5.1 Model-based gain tuning [Model gain tuner]

In this section, a novel gain tuning method for the Romea controller is derived and explained.
It is achieved through the time of convergence of the robot’s heading, using a dynamic model
(However this approach might not be applicable in every use case, if so could consider a N-order
approximation of a NN gain tuner , as shown in section A.4 as a deterministic substitute).

System response time

From the description of the Romea controller in section 2.5, it will be expressed that the gain Kp

is correlated with a settling distance Dy for the convergence of the lateral error y ; and the gains
Kp and Kd are proportional to the damping factor ξ of the control system.

Given a constant damping factor ξ = 1, and with a model-based upper-bound approximation
of Dy, a valid approximation of the control gains can be inferred. As such, the following section
describes a gain adaptation method, that uses Kp and Kd to set up the theoretical convergence
distance of the robot, and adapt it with respect to the robot behavior, derived from the dynamic
model.

The Romea controller described in section 2.5, imposes the following dynamics of the lateral
error with respect to the curvature (as described in the equation (2.12)):

∂2y

∂s2
+Kd

∂y

∂s
+Kpy = 0 (5.1)

The relation between the gains and the damping factor ξ of this second order system is the following:

ξ =
Kd

2
√

Kp

(5.2)

Then, using a damping factor of ξ = 1, a quadratic relation between the two gains Kp and Kd is
derived:

Kp =
K2

d

4
(5.3)

71

72 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

From those considerations, one can determine that the settling distance for a 5% tracking error
can be approximated by:

Dy =
8

Kd
(5.4)

As a result, one can derive the settling time for the convergence of y, according to the speed of the
robot as follows:

Ty =
8

vKd
(5.5)

which describes the system’s response time in closed loop, with the steering controller, pending
on the gain Kd (since Kp directly relies on the derivative gain). This is a theoretical settling time
imposed by the control law, which is satisfied if the robot dynamics allows such a settling time.
This will depend on the robot’s properties (actuator, inertia), and on the grip conditions.

Settling time for the robots yaw rate

In order to check if the settling time expected to be imposed by the controller gains is achievable in
practice, let us consider the dynamic model of the mobile robot with a linear tyre model described
at the Eq. (2.3). One can write:

Ẋ = A(CF , CR)X +B(CF , CR)δF (5.6)

where:

A(CF , CR) =

[
−L2

FCF−L2
RCR

v2Iz
−LFCF+LRCR

Iz

−LFCF−LRCR

v2
2m

− 1 −CF+CR

v2m

]

B(CF , CR) =

[
LFCF

Iz
CF

v2m

]
, X =

[
θ̇
β

] (5.7)

By deriving Eq. (5.6) over time, and by substituting β̇ with the one in Eq. (2.3), the following
second order differential equation over ω = θ̇ is obtained:

ω̈ −A1,1ω̇ −A1,2A2,1ω = A1,2A2,2β (5.8)

The 5% response time is deduced from this second order differential equation (5.8) on the yaw rate
ω. Adding the steering actuator response time τδ, one can derive the settling time for the yaw rate
of the robot as follows:

Tω = τδ +
4vIz

L2
FCF + L2

RCR
(5.9)

Eq. (5.9) shows that CR and CF are inversely proportional to the settling time for the angular
velocity, and that v is directly proportional to the settling time for the angular velocity. This is
logical since the worse the grip conditions are, the more time it takes for a vehicle to establish a
constant yaw rate with respect to a set point imposed by a constant steering angle δF .

Gain adaptation

In order to prevent oscillations and due to the nature of the controller, the system response time
Ty is expected to be larger than the settling time Tω. As such, using Shannon’s sampling theory
the condition Ty ≫ Tω has to be met. In practice, one can define the following constraint between
the settling time Ty imposed by the control gain Kd and Kd to ensure the convergence of y, and
the settling time Tω required for the yaw rate to converge as:

Ty = NTω (5.10)

with N a natural number above 2 determined empirically (in the experiments, N was determined
as N = 4).

To be stable, the settling time imposed by Eq. (5.5) has to be inline with robot’s capabilities
described in the constraint Ty = NTω. As a result, a condition for stability can be defined by
introducing Eq. (5.5) to obtain a tuning gain Kd satisfying the robot’s constraints:

Kd =
8

vNTω
(5.11)

5.1. MODEL-BASED GAIN TUNING [MODEL GAIN TUNER] 73

Using Tω and Kp described at Eq. (5.9), a deterministic means of adapting the gains Kp and
Kd using the velocity and cornering stiffness can be achieved.

The prediction horizon of the controller is defined as Tω, however due to the discretization of
the control loop at 10hz, the prediction horizon fluctuates very little using this method, implying
an almost constant prediction horizon.

The proposed expression (5.11) relies mainly on the velocity, the grip conditions, and robot
properties (inertia and actuator delays). It however does not account for the perception and
observer uncertainty, which play a role in the robot’s stability. This implies that the approximation
of the settling distance Dy is incomplete, which implies that this method could be sub-optimal
when compared to neural networks gain tuning.

Experimental setup

Control loop setup

The model-based gain tuner computes the steering control gains in real-time. These steering control
gains are then passed to the controller before the steering angle is calculated. This is shown in the
figure 4.13 where theModel gain tuner takes as inputs the speed and the front and rear cornering
stiffness (denoted CF & CR respectively), and returns the steering control gains. The control law
that is used in tandem is the Romea control law, as the model-based gain tuner was designed for
said control law, and in order to preserve the comparability with the previous methods.

Robot

Observer

Steer Controller
Trajectory

Errors Steering

MeasuresState

Model gain tuner

Speed, CR & CF

Target Speed
Steer Gains

Figure 5.1: Overview of the proposed method.

The speed is defined as constant before the path following. An Extended Kalman Filter (EKF)
[53] is used as part of the Observer in order to filter the noise from the robot’s sensors, and improve
the accuracy of the tracking. Following the EKF, a sliding angle observer is used [50] in order to
estimate the front and rear sliding angles, which are needed to estimate the front and rear cornering
stiffness detailed in section 2.7.

Metrics

The metric used for the analysis is identical to the previously defined surface error given by the
equation (4.4).

Aerror =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)∣∣∣∣∣ ∆t

As it will allow for minimal bias when comparing the methods.

Simulated results

Properties of the robuFAST experimental mobile platform detailed in section 5.3 are used as pa-
rameters: a wheelbase of 1.2m, 430kg of weight, a max steering angle of 15◦, and a max acceleration
0.5m.s−2 for the simulations.

The Model gain tuner corresponds to the Romea steering control with gains set by the
model-based gain tuner introduced above. This method along with the baselines controllers, were
tested in the simulation with the same speeds, trajectories, and grip conditions as used (CF & CR
constant, sampled from 7000 to 30000 N.rad−1) in the training of the trained method defined in

74 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

the previous sections (e.g. 4.1). These tests were run 100 times each in order to get a consistent
mean and variation for each method.

The gains for the existing controllers are set to the same values defined in the section 4.1.

Quantitative Analysis

A first set of simulated runs was computed using the trajectories described in the appendix A.12.
From this, the table 5.1 was obtained. It describes the Surface error from the equation (4.4), for

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1
Romea 1.21 (±0.38) 1.48 (±0.75) 29.15 (±0.90) 2.48 (±1.27) 1.09 (±0.04)

Model gain tuner 1.06 (±0.25) 1.11 (±0.57) 25.46 (±1.15) 1.98 (±1.26) 1.09 (±0.03)
NN gain tuner 1.18 (±0.26) 1.44 (±0.62) 19.77 (±1.95) 1.99 (±1.26) 1.17 (±0.03)

2m.s−1
Romea 1.70 (±0.71) 2.78 (±1.22) 33.95 (±1.74) 4.72 (±1.52) 1.13 (±0.06)

Model gain tuner 1.50 (±0.76) 2.15 (±1.36) 31.03 (±2.65) 3.67 (±1.87) 1.16 (±0.06)
NN gain tuner 1.62 (±0.40) 2.14 (±1.05) 17.51 (±1.82) 3.19 (±1.61) 1.35 (±0.08)

3m.s−1
Romea 3.49 (±1.29) 6.41 (±1.75) 55.00 (±5.08) 10.10 (±1.75) 1.22 (±0.12)

Model gain tuner 2.56 (±1.80) 4.03 (±2.87) 43.31 (±8.80) 7.19 (±3.43) 1.33 (±0.12)
NN gain tuner 2.34 (±0.70) 3.20 (±1.42) 20.61 (±4.40) 6.65 (±3.30) 1.50 (±0.14)

4m.s−1
Romea 4.72 (±1.62) 8.60 (±2.24) 59.01 (±9.25) 12.74 (±3.56) 1.26 (±0.15)

Model gain tuner 4.66 (±3.69) 7.48 (±4.82) 69.39 (±23.62) 14.40 (±7.06) 1.61 (±0.25)
NN gain tuner 3.96 (±2.27) 5.38 (±1.99) 27.95 (±6.48) 12.05 (±7.91) 1.81 (±0.24)

Table 5.1: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 0m.

each method at all the speeds and trajectories used during the training, with an initial error of
0m. The underlined and bold values mean that the result is significant and has a p-value below
10−3, determined using the Welch-t test [81].

Overall, the average surface error for the previous NN gain tuner was noticeably lower than
the proposed Model gain tuner method at 5.30m2, where as the surface error for Romea was
8.84m2 (a 40.0% reduction), and the surface error for the Model gain tuner method was 7.60m2

(a 30.3% reduction). From this table, more specific strengths and weaknesses can be observed.
The Model gain tuner was able to match or exceed the performance of the existing controllers in
most cases. However, it was not able to outmatch the performance of the NN gain tuner method
at any speeds above 2m.s−1 with the exception of the line trajectory. Furthermore, it seems that
the NN gain tuner and the Model gain tuner methods are quite similar in performance, when
compared to the static gain Romea method. Overall it seems that the NN gain tuner method
is able to outmatch the more complex Model gain tuner method, which requires two additional
observers in order to achieve the desired performance. As with the previous methods, when adding
an initial lateral error of 1m at the start of the trajectories, both the NN gain tuner method
and the Model gain tuner method are capable of impressive performance, as seen in table 5.2.

Overall, the average surface error for the NN gain tuner was noticeably lower than the
proposed Model gain tuner method at 7.07m2, where as the surface error for Romea was 14.7m2

(a 51.9% reduction), and the surface error for the Model gain tuner method was 9.51m2 (a 25.7%
reduction). From this table, more specific strengths and weaknesses can be observed. The NN
gain tuner was able to match and slightly exceed the performance of the Model gain tuner
in most of the tested cases. In particular, both methods seem very comparable on estoril5 and
estoril7 trajectories.

Qualitative Analysis

When focusing with a qualitative analysis over the spline5 trajectory, at 2m.s−1 with 1m of
initial error, the following results are obtained. Figure 5.2 shows the same behavior as previously
described, but for the Model gain tuner method. Indeed the reactivity of the initial lateral error

5.1. MODEL-BASED GAIN TUNING [MODEL GAIN TUNER] 75

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1
Romea 4.44 (±0.39) 4.76 (±0.74) 32.40 (±0.89) 5.73 (±1.24) 4.35 (±0.08)

Model gain tuner 2.85 (±0.27) 2.91 (±0.57) 27.25 (±1.19) 3.78 (±1.24) 2.89 (±0.12)
NN gain tuner 3.00 (±0.26) 3.27 (±0.61) 21.58 (±1.96) 3.85 (±1.23) 3.00 (±0.08)

2m.s−1
Romea 6.07 (±0.71) 7.18 (±1.22) 38.33 (±1.74) 9.00 (±1.51) 5.52 (±0.10)

Model gain tuner 3.31 (±0.76) 3.99 (±1.35) 32.83 (±2.69) 5.49 (±1.85) 2.99 (±0.22)
NN gain tuner 3.31 (±0.41) 3.86 (±1.04) 19.18 (±1.86) 5.15 (±1.69) 3.09 (±0.15)

3m.s−1
Romea 11.50 (±1.30) 14.27 (±1.73) 63.08 (±5.03) 17.15 (±1.85) 9.21 (±0.15)

Model gain tuner 4.53 (±1.79) 6.03 (±2.85) 45.30 (±8.78) 9.12 (±3.40) 3.32 (±0.44)
NN gain tuner 4.06 (±0.73) 4.96 (±1.43) 22.41 (±4.23) 8.35 (±3.40) 3.26 (±0.28)

4m.s−1
Romea 12.64 (±1.68) 16.31 (±2.20) 66.99 (±9.24) 19.71 (±3.60) 9.13 (±0.17)

Model gain tuner 6.67 (±3.73) 9.53 (±4.78) 71.38 (±23.67) 16.43 (±7.10) 3.66 (±0.72)
NN gain tuner 5.67 (±2.14) 7.19 (±2.08) 29.19 (±5.97) 13.55 (±8.24) 3.61 (±0.43)

Table 5.2: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Model gain tuner
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

Model gain tuner
NN gain tuner

Figure 5.2: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

is very high, as the Model gain tuner and the NN gain tuner methods quickly converge to the
trajectory, and are able to significantly reduce the lateral error once converged when compared to
the previously described methods. However, some errors occur during the transitions between the
cornering and the straight sections of the trajectory with the Model gain tuner method.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

Su
rfa

ce
 E

rro
r -

 [m
2]

Model gain tuner
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.1

0.2

0.3

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

Model gain tuner
NN gain tuner

Figure 5.3: On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa.

This result is quite clear on the objective function and surface error from figure 5.3, as the
Model gain tuner is able to obtain comparable performance to the NN gain tuner method,
with the apparent errors occurring mostly at the corners, which cause a significant cumulative
difference between the methods.

The steering plots are very similar, due to the same controller being used without altering the
control output. Indeed the differences are very minor and are difficult to interpret to any specific
reaction for each method.

76 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10
St

ee
rin

g
st

at
e

-
f [

de
g]

Model gain tuner
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

10

0

10

St
ee

rin
g

co
nt

ro
l -

 u
f [

de
g]

Model gain tuner
NN gain tuner

Figure 5.4: On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp

Model gain tuner
NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

H
or

iz
on

 -
H

 [s
]

Model gain tuner
NN gain tuner

Figure 5.5: On the left: The gains over the curvilinear abscissa. On the right: The horizon over
the curvilinear abscissa.

As the neural network and the model-based method are only modulating the control parameters,
this means that the desired behavior is encoded in said control parameters. Figure 5.5 shows these
control parameters.

The behavior of the NN gain tuner is identical to the previous section, as the NN gain
tuner is compensating for the lateral error, the speed, and the cornering in real-time.

The Model gain tuner however has a very smooth approach, as it converges slowly as the
speed increases, to a set level. This is due to the Model gain tuner method taking as input the
speed and the cornering stiffness, which would have converged and stabilized after the initial 10m
of the trajectory, leading to a very constant gain output. However, this seems to be a valid gain
tuner strategy, as show the Model gain tuner is able to rival the NN gain tuner , by only using
the cornering stiffness and speed, all while keeping the damping factor at ξ = 1, where as the NN
based methods are modulating ξ implicitly through the gains.

For the horizon of the predictive section of the controller, figure 5.5 shows that the horizon
is constant for the deterministic method. It is possible to correlate the horizon to the calculated
system response time Ty, but in practice this leads to a horizon with a much lower performance
and as such a constant value was used, in this case the constant value described in section 4.1.

An unusual behavior is also visible for the NN gain tuner method as the damping factor ξ is

often below
√
2
2 , a value below this for the damping ξ causes the control system to be considerably

under-damped and would not classically be used to tune a control law due to the high oscillations
that would occur. However the neural network does this in stable regions (i.e. straight lines),
where a higher reactivity can allow for a fast reactivity and convergence, and then increases the
damping ξ as needed in order to remain stable.

Analysis of the approach

Overall it seems that the Model gain tuner is able to reach similar performance when compared
to the NN gain tuner method, which implies that even with only the speed and cornering
stiffness the method was able to match the NN gain tuner method. This means that the NN
gain tuner method can be used in order to reach similar performance to a deterministic gain
tuning method, without needing to develop said method for every robot and controller. While the
NN gain tuner method is also able to easily exploit inputs that would be very difficult to include
into a deterministic gain tuning method.

5.2. CONTROL PARAMETER TUNING USING DYNAMIC PARAMETERS [FULL NN
GAIN TUNER] 77

Unfortunately, this performance similarity also seems to imply that both methods are either
incomplete and that adding these parameters to the NN gain tuner method would improve its
performance. Or it could mean that only the common input, which is the speed, is the only relevant
input to the gain tuning performance.

To determine this, additional inputs are added to the NN gain tuner method1. It needs to
be noted that the addition of inputs element by element to the NN gain tuner method can be
counter intuitive, as adding inputs that describe incomplete information (meaning adding a single
parameter that describes the dynamics of the system) might lead to a degradation of performance.

As such, The results shown in the following section include a set of additional inputs, including
the Kalman covariance matrix (in order to determine the validity of the observer’s outputs).

5.2 Control parameter tuning using dynamic parameters [Full NN
gain tuner]

In order to feed the controller with lateral and angular errors, the state vector has to be known.
For estimating the state of the robot, an Extended Kalman filter (EKF) is used. It assists in
determining the linear speed, the x, y position, and the heading. It is widely used due to its
simplicity and robustness. In the control system, C is the covariance matrix of the estimation and
it is used to determine the level of precision of the perception. A novelty the work done is that both
the estimate and the corresponding covariance matrix are integrated in the tuning of the control
law. Indeed this allows the system to take into account any combination of any sensor failure in
a quantifiable way, all without exposing the neural network to any redundant information, which
simplifies greatly the training of said neural network.

The diagonal of the EKF covariance matrix C is thus appended to the input vector of the
neural network computing the control parameters. This allows the neural network to estimate the
accuracy of any input with respect to the EKF covariance matrix in real time.

In this section, NN controller and Delta NN ctrl are not tested, as their performance was
sub-optimal in the previous section, and this behavior was repeated even when the methods were
given the same inputs as the Full NN gain tuner method (see appendix A.5 for details)

Experimental setup

Control loop setup

The neural network predicts the control parameters in real-time. In this case, they are the steering
control gains and horizon, which are then passed to the controller before it calculates the steering
angle. This is shown in the figure 5.6 where the neural network takes as inputs the errors, curvature,
and speed, then returns the steering control gains and horizon. The control law that is used in
tandem is the Romea control law, in order to preserve the comparability with the previous methods.

Robot

Observer

Steer Controller
Trajectory

Errors Steering

MeasuresState

Optimizer

Full NN gain tuner

Errors, curva-
tures, speed, C,
CR/CF , βf/βr

Objective
function

Target SpeedSteer Gains,
horizon

Parameters

Figure 5.6: Overview of the proposed method.

The neural network is trained in a simulation using the CMA-ES optimizer depicted as the
Optimizer in the figure 5.6, which takes as input the objective function value and returns the

1Where adding CR, CF increased performance by 0.221%, CR, CF , βF , βR increased performance by 1.43%, and
adding Cx,Cy increased performance by 1.62%

78 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

neural network parameters. The neural network takes as input the same information as an existing
steering controller, which is the lateral error, angular error, curvature, future curvature (20 sampled
points over 5s horizon), speed, and the robot’s steering state. In addition it also takes as inputs
the dynamic parameters, such as the cornering stiffnesses (CR/CF), the sliding angles (βf/βr),
and the sensors accuracy encoded in the Kalman covariance matrix (C). From these inputs, the
neural network is then expected to output the control parameters. The speed is defined as constant
before the path following. An Extended Kalman Filter (EKF) [53] is used as part of the Observer
in order to filter the noise from the robot’s sensors, determine the sensor accuracy, and improve
the accuracy of the tracking. Following the EKF, a sliding angle observer is used [50] in order
to estimate the front and rear sliding angles, which are needed to estimate the front and rear
cornering stiffnesses. The latter are estimated then using a cornering stiffness observer [89].

Metrics

The objective function used is identical to the previously defined first objective function, shown in
the equation (4.3).

obj1 = objerr + ksteerobjsteer

Integrating the neural network as a control parameter tuner for the steering controller does not
alter the training target, since both control tasks are the same, which is to steer the robot on its
path.

The metric used in the analysis is identical to the previously defined surface error shown in the
equation (4.4).

Aerror =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)∣∣∣∣∣ ∆t

As it will allow for minimal bias when comparing the methods.

Training details

The neural network is trained over 5 unique trajectories (estoril5, estoril7, estoril910, line, and
spline5 as shown in A.12) twice with two varying scaling factors of 1 and 2 (this is done so
longer trajectories are also tested with lower curvatures), at speeds of 1.0, 2.0, 3.0, and 4.0 m.s−1,
with varying grip conditions (cornering stiffness ranging from 7000 to 30000), and with GPS
losses occurring randomly across the trajectory (a 5 second signal loss, forcing a dead reckoning).
Properties of the robuFAST experimental mobile platform are used as parameters: a wheelbase of
1.2m, 430kg of weight, a max steering angle of 15◦, and a max acceleration 0.5m.s−2

Simulated results

The trained method along with the baselines controllers, were tested in the simulation with the
same speeds, trajectories, and grip conditions (CF & CR constant, sampled from 7000 to 30000
N.rad−1) as used in the training of the trained method. These tests were run 100 times each in
order to get a consistent mean and variation for each method.

The gains for the existing controllers are set to the same values defined in the section 4.1.

Quantitative Analysis

A first set of simulated runs was computed using the trajectories described in the appendix A.12.
From this, the table 5.3 was obtained. It describes the Surface error from the equation (4.4), for
each method at all the speeds and trajectories used during the training, with an initial error of
0m. The underlined and bold values mean that the result is significant and has a p-value below
10−3, determined using the Welch-t test [81].

Overall, the average surface error for Full NN gain tuner was slightly lower than the previous
NN gain tuner method at 5.11m2, where as the surface error for Romea was 8.84m2 (a 42.2%
reduction), the surface error for the Model gain tuner method was 7.60m2 (a 32.8% reduction),
and the surface error for the NN gain tuner method was 5.30m2 (a 3.58% reduction). The
NN gain tuner and Full NN gain tuner methods seem similar overall, but a difference of up
to 33% can be observed in some cases. From this table, more specific strengths and weaknesses

5.2. CONTROL PARAMETER TUNING USING DYNAMIC PARAMETERS [FULL NN
GAIN TUNER] 79

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 1.21 (±0.38) 1.48 (±0.75) 29.15 (±0.90) 2.48 (±1.27) 1.09 (±0.04)
Model gain tuner 1.06 (±0.25) 1.11 (±0.57) 25.46 (±1.15) 1.98 (±1.26) 1.09 (±0.03)
NN gain tuner 1.18 (±0.26) 1.44 (±0.62) 19.77 (±1.95) 1.99 (±1.26) 1.17 (±0.03)

Full NN gain tuner 1.14 (±0.23) 1.23 (±0.54) 20.94 (±1.57) 1.64 (±0.93) 1.17 (±0.03)

2m.s−1

Romea 1.70 (±0.71) 2.78 (±1.22) 33.95 (±1.74) 4.72 (±1.52) 1.13 (±0.06)
Model gain tuner 1.50 (±0.76) 2.15 (±1.36) 31.03 (±2.65) 3.67 (±1.87) 1.16 (±0.06)
NN gain tuner 1.62 (±0.40) 2.14 (±1.05) 17.51 (±1.82) 3.19 (±1.61) 1.35 (±0.08)

Full NN gain tuner 1.64 (±0.41) 2.02 (±0.99) 17.91 (±2.09) 2.87 (±1.20) 1.36 (±0.07)

3m.s−1

Romea 3.49 (±1.29) 6.41 (±1.75) 55.00 (±5.08) 10.10 (±1.75) 1.22 (±0.12)
Model gain tuner 2.56 (±1.80) 4.03 (±2.87) 43.31 (±8.80) 7.19 (±3.43) 1.33 (±0.12)
NN gain tuner 2.34 (±0.70) 3.20 (±1.42) 20.61 (±4.40) 6.65 (±3.30) 1.50 (±0.14)

Full NN gain tuner 2.17 (±0.78) 3.17 (±1.43) 18.93 (±3.45) 5.25 (±2.12) 1.42 (±0.10)

4m.s−1

Romea 4.72 (±1.62) 8.60 (±2.24) 59.01 (±9.25) 12.74 (±3.56) 1.26 (±0.15)
Model gain tuner 4.66 (±3.69) 7.48 (±4.82) 69.39 (±23.62) 14.40 (±7.06) 1.61 (±0.25)
NN gain tuner 3.96 (±2.27) 5.38 (±1.99) 27.95 (±6.48) 12.05 (±7.91) 1.81 (±0.24)

Full NN gain tuner 3.61 (±2.40) 5.04 (±2.21) 30.32 (±54.45) 9.10 (±3.98) 1.70 (±0.17)

Table 5.3: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial lateral error of 0m.

can be observed. The Full NN gain tuner was able to match or exceed the performance of
the previous NN gain tuner method in all cases. In particular, it was able to reach a slight
improvement over the estoril5 and estoril7 trajectories, with a significant improvement over the
spline5 trajectory, and comparable performance over the estoril910 and line trajectories, with
similar poor behavior as shown previously for line trajectory when compared to the constant gain
methods, due to the over-reaction of the gain tuning methods. Overall it seems that the Full NN
gain tuner method is able to outmatch the NN gain tuner method in some cases, while having
similar performance otherwise, which is translated in a small difference in the average surface
error described previously. As with the previous methods, when adding an initial lateral error of
1m at the start of the trajectories, the Full NN gain tuner method is capable of impressive
performance, as seen in table 5.4.

Overall, the average surface error for the Full NN gain tuner was slightly lower than the
previous NN gain tuner method at 6.88m2, where as the surface error for Romea was 14.7m2

(a 53.2% reduction), the surface error for the Model gain tuner method was 9.51m2 (a 27.7%
reduction), and the surface error for the NN gain tuner method was 7.07m2 (a 2.69% reduction).
From this table, more specific strengths and weaknesses can be observed. The Full NN gain
tuner method had similar performance to the NN gain tuner method as shown previously.
This is likely due to both methods acting on the same outputs, and both integrating the lateral
error, which seems to be a key input for correcting the initial error with a minimal overall error.

Qualitative Analysis

Normal conditions

When focusing with a qualitative analysis over the spline5 trajectory, at 2m.s−1 with 1m of
initial error, the following results are obtained. Figure 5.7 shows the same behavior as previously
described. Indeed the reactivity of the initial lateral error is very high, as the Full NN gain
tuner and the NN gain tuner methods quickly converge to the trajectory, and are able to
significantly reduce the lateral error once converged, similarly to the Model gain tuner method.
The difference over the lateral error between the Full NN gain tuner and the NN gain tuner
methods are difficult to discern.

This results can be more accurately interpreted on the objective function and surface error
from figure 5.8, as the Full NN gain tuner is able to obtain very comparable performance to

80 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 4.44 (±0.39) 4.76 (±0.74) 32.40 (±0.89) 5.73 (±1.24) 4.35 (±0.08)
Model gain tuner 2.85 (±0.27) 2.91 (±0.57) 27.25 (±1.19) 3.78 (±1.24) 2.89 (±0.12)
NN gain tuner 3.00 (±0.26) 3.27 (±0.61) 21.58 (±1.96) 3.85 (±1.23) 3.00 (±0.08)

Full NN gain tuner 2.96 (±0.23) 3.04 (±0.54) 22.75 (±1.58) 3.46 (±0.91) 2.97 (±0.09)

2m.s−1

Romea 6.07 (±0.71) 7.18 (±1.22) 38.33 (±1.74) 9.00 (±1.51) 5.52 (±0.10)
Model gain tuner 3.31 (±0.76) 3.99 (±1.35) 32.83 (±2.69) 5.49 (±1.85) 2.99 (±0.22)
NN gain tuner 3.31 (±0.41) 3.86 (±1.04) 19.18 (±1.86) 5.15 (±1.69) 3.09 (±0.15)

Full NN gain tuner 3.38 (±0.41) 3.76 (±0.99) 19.65 (±2.11) 4.70 (±1.29) 3.11 (±0.14)

3m.s−1

Romea 11.50 (±1.30) 14.27 (±1.73) 63.08 (±5.03) 17.15 (±1.85) 9.21 (±0.15)
Model gain tuner 4.53 (±1.79) 6.03 (±2.85) 45.30 (±8.78) 9.12 (±3.40) 3.32 (±0.44)
NN gain tuner 4.06 (±0.73) 4.96 (±1.43) 22.41 (±4.23) 8.35 (±3.40) 3.26 (±0.28)

Full NN gain tuner 3.96 (±0.80) 4.98 (±1.41) 20.76 (±3.39) 7.33 (±2.24) 3.27 (±0.23)

4m.s−1

Romea 12.64 (±1.68) 16.31 (±2.20) 66.99 (±9.24) 19.71 (±3.60) 9.13 (±0.17)
Model gain tuner 6.67 (±3.73) 9.53 (±4.78) 71.38 (±23.67) 16.43 (±7.10) 3.66 (±0.72)
NN gain tuner 5.67 (±2.14) 7.19 (±2.08) 29.19 (±5.97) 13.55 (±8.24) 3.61 (±0.43)

Full NN gain tuner 5.38 (±2.28) 6.88 (±2.13) 29.66 (±12.11) 11.13 (±3.89) 3.59 (±0.30)

Table 5.4: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.7: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

2

4

6

Su
rfa

ce
 E

rro
r -

 [m
2]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.8: On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa.

the NN gain tuner method.

Due to the number of outputs for each method, the damping ξ and the control gains are
separated on the figure 5.9, furthermore the gains for the Model gain tuner are removed due
to their simplicity and for readability. As the neural networks are only modulating the control
parameters, this means that the desired behavior is encoded in said control parameters. However
as the number of inputs increases, so does the complexity and interpretability of the output,
this means that it is no obvious which inputs are influencing the gain. Due to this the feature
importance becomes one of our key tools for analyzing the gains going forward.

5.2. CONTROL PARAMETER TUNING USING DYNAMIC PARAMETERS [FULL NN
GAIN TUNER] 81

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp
Model gain tuner

NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

D
am

pi
ng

 fa
ct

or
 -

 []

Model gain tuner
NN gain tuner

Full NN gain tuner

Figure 5.9: On the left: The gains over the curvilinear abscissa. On the right: The control damping
over the curvilinear abscissa.

From the figure 5.9, the kd gain is quite similar in amplitude, with the kp gain being modulated
differently. This implies a change not only with the gains, but with the damping of the control
law, obtained from the equation 5.2 ξ = Kd

2
√

Kp

. From this damping ξ the key differences between

NN gain tuner and Full NN gain tuner can be observed, noticeably the damping over the
initial sections of the corners (15 ≤ s ≤ 20 & 45 ≤ s ≤ 50) is higher, which can be explained
by knowing the cornering stiffness implies predictive capabilities when cornering, which lets the
neural network lower the damping for smoother control in non-critical conditions. This prevents
oscillations due to an under damped control, and prevents sensor noise from affecting the control
output, all while keeping the robot on the desired path, due to a high enough kd gain.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

H
or

iz
on

 -
H

 [s
]

Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.10: The horizon over the curvilinear abscissa.

For the horizon of the predictive section of the controller, figure 5.10 shows that the horizon
is very similar for both the NN gain tuner and the Full NN gain tuner methods, with a
slight increase in the corners. This can be explained as the steering response time is strongly
correlated with the cornering stiffness, and as such by adding the cornering stiffness to the in-
put, it allows the neural network to adapt the horizon as needed, depending on the grip conditions.

This analysis can be considered shallow, as the grip conditions and the sensor accuracy are not
modulated, and as such the full capabilities of the Full NN gain tuner is not underlined, as the
Kalman covariance and the cornering stiffness are effectively constant. As such the following will
show results when worsening the constant grip conditions and worsening the GPS accuracy.

GPS loss

When focusing with a qualitative analysis over the spline5 trajectory, at 2m.s−1 with 1m of initial
error, and a GPS signal loss around the middle of the trajectory causing the system to go into
dead reckoning for a short time, the following results are obtained. Figure 5.11 shows the same
behavior as previously described. Except between 35 ≤ s ≤ 45 where the GPS signal is lost and
the system is in dead reckoning. During the dead reckoning the error seems to be low for the NN
gain tuner and the Model gain tuner methods, until the GPS signal is reacquired and the
estimated position snaps back to the real position. When that happens, the error becomes very
significant, and drastic steering is needed in order to correct this error. This does not seem to
apply to the Full NN gain tuner , which seems to drift on the error, but in the real position is
following the trajectory very well. Once the GPS signal is reacquired the Full NN gain tuner

82 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

20 10 0 10 20 30
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.5

0.0

0.5

1.0

La
te

ra
l e

rro
r -

 y
 [m

]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.11: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

does not need to correct as much, as it is very close to the trajectory. An error still occurs which
is dealt very well, as it has also a gap to correct even if it is lower.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

2

4

6

8

Su
rfa

ce
 E

rro
r -

 [m
2]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.12: On the left: The surface error over the curvilinear abscissa. On the right: The
objective function over the curvilinear abscissa.

This behavior allows for the Full NN gain tuner method to have a much lower surface error,
when compared to the other methods, as seen in the figure 5.12.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp
Model gain tuner

NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

D
am

pi
ng

 fa
ct

or
 -

 []

Model gain tuner
NN gain tuner

Full NN gain tuner

Figure 5.13: On the left: The gains over the curvilinear abscissa. On the right: The control
damping over the curvilinear abscissa.

From the figure 5.13, the gains seem to drop for the Full NN gain tuner , along with an
increase in the damping, as the Kalman covariance slowly increases due to the dead reckoning
(45 ≤ s ≤ 50). This allows the controller to follow the angular error using kd, without over-
correcting the apparent error using kp, which allows for much better path tracking.

Low grip conditions

When focusing with a qualitative analysis over the spline5 trajectory, at 4m.s−1 with 1m of initial
error, and low grip conditions (stiffness coefficient decreased to a constant 7000N.rad−1 value),
the following results are obtained. Figure 5.14 shows the limits of the system at 4m.s−1, with low
grip conditions. The errors are very high, with the lowest seems to be the Full NN gain tuner .

Further analysis in the figure 5.15, shows that the Full NN gain tuner method has a much
lower surface error, when compared to the other methods, with the Model gain tuner method
obtaining very low performance likely due to the constant damping.

5.2. CONTROL PARAMETER TUNING USING DYNAMIC PARAMETERS [FULL NN
GAIN TUNER] 83

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

5

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0.5

0.0

0.5

1.0

La
te

ra
l e

rro
r -

 y
 [m

]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.14: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

10

20

Su
rfa

ce
 E

rro
r -

 [m
2]

Romea controller
Model gain tuner
NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

4

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
] Romea controller

Model gain tuner
NN gain tuner
Full NN gain tuner

Figure 5.15: On the left: The surface error over the curvilinear abscissa. On the right: The
objective function over the curvilinear abscissa.

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

G
ai

n
va

lu
es

kd
kp
Model gain tuner

NN gain tuner
Full NN gain tuner

0 10 20 30 40 50 60 70
Curvilinear abscissa - s [m]

0

1

2

3

D
am

pi
ng

 fa
ct

or
 -

 []

Model gain tuner
NN gain tuner

Full NN gain tuner

Figure 5.16: On the left: The gains over the curvilinear abscissa. On the right: The control
damping over the curvilinear abscissa.

From the figure 5.16, the gains seem much higher for the Full NN gain tuner , along with
very large damping in general and a very low damping when transitioning from and to the corner
sections. This allows the controller to follow the trajectory in an over-damped mode which avoids
over-steering, all while reacting correctly when critical sections occurs, which allows for much
better path tracking. This underlines one of the issues with a constant damping that the Model
gain tuner method uses. Furthermore, the Full NN gain tuner is more efficient than NN
gain tuner with lower grip conditions, due to the odometry that becomes very inaccurate at low
grip, which can be interpreted correctly thanks to the covariance input and cornering stiffnesses.
Surprisingly, the NN gain tuner does not seem to determine the grip conditions, even tough it
could theoretically rebuild the cornering stiffness values from its input, which implies that giving
addition information that is pretreated improves the performance considerably, even tough it is
entropically identical.

Feature importance

In order to better interpret and understand the neural network, a gradient based Feature impor-
tance analysis can be used to determine which inputs where useful, and quantify the utility of
each input with respect to each output. See section A.4 for details on the theory and implementa-
tion of the gradient based Feature importance analysis for the neural network. Using the Feature
importance analysis, the following results are obtained:

84 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

d
/dt

 [r
ad

. s
1]

dy
/dt

 [m
. s

1]
y

[m
]

R
 [r

ad
]

v
[m

. s
1]

 [r
ad

]
fut

ur
e c(s

) [m
1]

C xy
 [m

2]
F [

ra
d]

C F [
kN

. ra
d

1]
ct

rl,
F [

ra
d]

c(s
) [m

1]
F [

ra
d]

C R
 [k

N.
ra

d
1]

0

5

10

15

20

25

30

%
 Im

po
rta

nc
e

uniform importance
KP
KD
HORIZON

Figure 5.17: The feature importance for the Full NN gain tuner method for each input, denoted
in % of importance.

From the figure 5.17, the inputs that contribute the most the outputs of the Full NN gain
tuner method are in order of importance the rate of change of the angular error denoted dθ̃/dt,
the rate of change of the lateral error denoted dy/dt, which contribute a total of 40% of the
variations of the outputs of the NN gain tuner method. The rest of the inputs seems to have
a uniform importance distribution, which implies that most of the inputs are useful for predicting
the outputs of the neural network, which in turn demonstrates when compared to the previous
feature importance analysis that the addition of these inputs allows for a richer prediction of the
control gains and horizon.

This shows that the Full NN gain tuner is correcting the control gains output using most
of the inputs available to it. This allows for a more complex prediction of the gain and horizon,
which allows a higher level of performance with respect to the objective function and metrics as
shown previously. Furthermore, the neural network is able to take into account the sensor accuracy
denoted Cxy as shown previously, as it is considered more important as the cornering stiffnesses
denoted CF & CR that is used by the Model gain tuner shown previously. These factors allows
the Full NN gain tuner to outperform the Model gain tuner and the NN gain tuner when
the grip conditions and the sensor accuracy change over time.

Validation of the results over test trajectories

In order to validate the results shown previously, additional tests need to be run in conditions
that were not present during the training phase. This is done to verify that the method has not
over-fitted to the training set, and has indeed generalized to novel situations.

The following tables show the mean surface error generated by each method over multiple runs
for each speed with varying grip conditions (CR & CF from 7000 to 30000 N.rad−1), with GPS
losses, and with testing trajectory (i.e. outside the training dataset):

As shown in table 5.5, similar results are obtained when compared to the previous table 5.3
as the Full NN gain tuner obtains good performance and is comparable with the Model gain
tuner . However, an unusual behavior occurs over estoril1 2, as explained in section 4.3.

The table 5.6, shows similar results to the ones obtained when compared to the previous
table 5.4 as the Full NN gain tuner is able to outperform each method. However the same issue
occurs as well over the estoril1 2 trajectory as shown previously in section 4.3.

These results show that the method is capable of obtaining comparable performance when
tested over novel trajectories that are not part of the training environment.

Analysis of the approach

Overall it seems that the Full NN gain tuner has very good performance when compared to
the Model gain tuner method (with good consistency in training, as shown in appendix A.6),
while being able to be adaptive to sensor accuracy and grip conditions, allowing it in some case to
considerably outperform the NN gain tuner method. This shows that the neural network only
seems to be limited in the quality and quantity of input in order to obtain higher performance.
Indeed, if one would add additional information, such as a pre-processed camera input, higher
performance could be expected, this will be further detailed in the future works.

5.2. CONTROL PARAMETER TUNING USING DYNAMIC PARAMETERS [FULL NN
GAIN TUNER] 85

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

1m.s−1

Romea 5.06 (±0.81) 2.40 (±0.54) 2.59 (±0.45)
Model gain tuner 4.45 (±0.77) 1.46 (±0.41) 1.68 (±0.34)
NN gain tuner 6.01 (±0.86) 1.93 (±0.39) 1.85 (±0.41)

Full NN gain tuner 4.91 (±0.82) 1.48 (±0.39) 1.67 (±0.36)

2m.s−1

Romea 7.67 (±1.12) 4.38 (±1.01) 4.13 (±0.93)
Model gain tuner 6.70 (±1.30) 3.12 (±1.18) 2.77 (±1.14)
NN gain tuner 9.03 (±1.65) 3.07 (±0.66) 2.46 (±0.80)

Full NN gain tuner 7.50 (±1.02) 2.85 (±0.74) 2.40 (±0.75)

3m.s−1

Romea 16.16 (±2.01) 10.24 (±2.06) 9.26 (±2.00)
Model gain tuner 12.72 (±3.54) 5.87 (±2.71) 4.26 (±2.67)
NN gain tuner 15.17 (±4.44) 5.17 (±1.10) 3.17 (±1.22)

Full NN gain tuner 15.47 (±2.27) 4.83 (±1.14) 3.12 (±1.15)

4m.s−1

Romea 22.03 (±4.43) 13.11 (±2.81) 11.97 (±3.17)
Model gain tuner 26.29 (±11.13) 9.95 (±5.28) 6.51 (±4.73)
NN gain tuner 38.82 (±10.67) 8.33 (±2.23) 4.49 (±2.28)

Full NN gain tuner 42.62 (±10.91) 7.54 (±2.38) 4.22 (±2.25)

Table 5.5: Surface error in [m2] of each method at all the speeds used during training, over novel
test trajectories, with an initial error of 0m.

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

1m.s−1

Romea 8.35 (±0.74) 5.70 (±0.53) 5.94 (±0.42)
Model gain tuner 6.31 (±0.79) 3.30 (±0.42) 3.49 (±0.35)
NN gain tuner 8.17 (±0.82) 3.78 (±0.39) 3.70 (±0.41)

Full NN gain tuner 6.87 (±0.72) 3.30 (±0.38) 3.47 (±0.36)

2m.s−1

Romea 12.41 (±1.03) 8.79 (±1.01) 8.64 (±0.90)
Model gain tuner 8.76 (±1.29) 4.98 (±1.19) 4.75 (±1.12)
NN gain tuner 10.66 (±1.56) 4.78 (±0.67) 4.28 (±0.77)

Full NN gain tuner 9.03 (±1.04) 4.59 (±0.73) 4.16 (±0.74)

3m.s−1

Romea 24.43 (±2.06) 18.08 (±2.00) 17.57 (±1.93)
Model gain tuner 15.05 (±3.24) 7.97 (±2.66) 6.44 (±2.56)
NN gain tuner 18.80 (±5.18) 6.90 (±1.09) 5.00 (±1.19)

Full NN gain tuner 17.89 (±2.87) 6.65 (±1.12) 5.00 (±1.13)

4m.s−1

Romea 30.16 (±4.17) 20.75 (±2.76) 20.03 (±3.04)
Model gain tuner 28.26 (±10.97) 12.04 (±5.24) 8.45 (±4.70)
NN gain tuner 42.67 (±12.10) 10.12 (±2.28) 6.24 (±2.25)

Full NN gain tuner 43.79 (±14.89) 9.38 (±2.39) 6.11 (±2.28)

Table 5.6: Surface error in [m2] of each method at all the speeds used during training, over novel
test trajectories, with an initial error of 1m.

It should be noted that the neural network is compensating for the Kalman filter’s error when
in dead reckoning, by altering the steering command. This implies that the control law is now
dependent on the Kalman filter, which means that the neural network will need to be retrained, if
the Kalman filter is changed. Furthermore, it was observed that the Full NN gain tuner was not
able to rebuild CR and CF , even when given the same inputs as the cornering stiffness observer
(see appendix A.8), which implies that pre-treating the information improves the performance
considerably.

Unfortunately, the performance obtained seems to be the limit for the dynamic effect, as it
seems that a constant speed in very low grip conditions can generate very poor path following

86 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

performance. If the speed was not constant, the controller could slow down in order to correct
quickly, and then accelerate when possible. This behavior is not dissimilar to Formula-1 racing,
where the acceleration control is just as important as the steering for the path following.

As such, a natural extension to this work would be to control the robot’s speed in real time,
while also adapting the control gains, in order to correctly control the robot at all speeds. Indeed
the Romea control law’s gains define the reactivity over time, and as such are dependent on the
speed. This implies that a coupled speed and steer control system would be optimal for faster
path following performance, with higher accuracy. Furthermore, with the speed control derived
from the same information as the steer control, adaptive performance that depends on the sensor
quality and dynamic parameter can be obtained.

The results shown in the following section explores the steering control methods previously
described, along with a real time speed tuning, in order to adapt both steering and speed.

5.3 Real world experiments

In order to validate the results shown previously, experiments were run with on the RobuFAST
platform, and was done for the Model gain tuner and the Full NN gain tuner .

The RobuFast robotic platform

The proposed methods have been tested on the RobuFAST robotic platform (Fig 5.18). The robot’s
mass is about 420kg, has a vertical moment of inertia of 300kgm2, a wheelbase of 1.2m from the
center of each axles, a center of mass at 0.625m from the center of the rear axle, and a front steering
response time of 0.45s. The platform runs on the ROS middleware with a control frequency of
10Hz. It has an IMU and a RTK-GPS which updates the observers and state estimators every
10Hz. The sliding angles observer is tuned for a settling time of 0.5s, and the cornering stiffness
observer is tuned for a settling time of 1.5s.

The RobuFAST robot, is as robot issued from the FAST project. It has been designed as an
experimental platform, that has been modified in order to reach 8.0m s−1.

Figure 5.18: The RobuFAST robotic plat-
form

Mass (m) 420Kg
Vertical moment of inertia (Iz) 300Kgm2

Wheelbase (L) 1.2m
Front Wheelbase (LF) 0.575m

Max steering 20◦

Steering action delay (Pure) 0.2s
Steering action delay (Rise time) 0.25s
Steering action delay (Total) 0.45s

Max speed 8.0m s−1

Max acceleration 1.5m s−2

Table 5.7: The given RobuFAST characteristics
table, for reference.

Experimental Setup

We ran the experiment on the platform. Over sunny warm day and cloudless weather. With the
following trajectories:

The robot starts with an initial lateral error, with a straight line to observe the stabilization
from said error. A corner not too sharp to saturate the steering, but sharp enough to observe the
controller’s reaction to curvature. And then a straight line to observe the stabilization from the
corner. The trajectory 1 starts on gravel, reaches concrete on the first half of the corner, and the
rest is on dry grass. As such, it has relatively good grip, and transition on the type of ground (Cr

& Cf ∼ 15000N rad−1). The trajectory 2 is on a freshly culled field of wheat, where the ground is

5.3. REAL WORLD EXPERIMENTS 87

Figure 5.19: The trajectories. Left: trajectory 1. Right: trajectory 2.

uneven and covered in a layer of dust. This implies the ground had relatively poor grip conditions
(Cr & Cf ∼ 10000N rad−1).

Trajectory 1

The following results were obtained at 4m.s−1 over the first trajectory: We can see the error over

10 0 10 20 30 40
x position - x_pos [m]

0

5

10

15

20

y
po

sit
io

n
- y

_p
os

 [m
]

Trajectory path
Romea controller
Model gain tuner
Full NN gain tuner

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

2

1

0

La
te

ra
l e

rro
r -

 y
 [m

] Gravel Concrete GrassGravel Concrete GrassGravel Concrete Grass

Romea controller
Model gain tuner
Full NN gain tuner

Figure 5.20: The trajectory (on the left) and the lateral error (on the right). Over the total
trajectory

the entire trajectory is the lowest with the Full NN gain tuner method, with the Model gain
tuner method obtaining some significant errors, and where the expert gain had the largest error.

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

5

10

15

20

25

Su
rfa

ce
 E

rro
r -

 [m
2] Gravel Concrete GrassGravel Concrete GrassGravel Concrete Grass

Romea controller
Model gain tuner

Full NN gain tuner

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

2

4

Su
rfa

ce
 E

rro
r -

 [m
2]

Gravel Concrete GrassGravel Concrete GrassGravel Concrete Grass

Romea controller
Model gain tuner

Full NN gain tuner

Figure 5.21: The surface error Aerror, and the surface error Aerror after the initial lateral error.

A result that is reflected clearly in the surface error. Where the Full NN gain tuner method
reaches a 62.1% reduction in the surface error, and where the Model gain tuner method reaches
a 48.9% reduction in the surface error. If we do not include the starting error, the results are 72.3%
reduction and 41.9% reduction respectively.

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

1

2

3

4

5

Ob
je

ct
iv

e
fu

nc
tio

n
- [

m
] Gravel Concrete GrassGravel Concrete GrassGravel Concrete Grass

Romea controller
Model gain tuner

Full NN gain tuner

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0.2

0.0

0.2

0.4

0.6

Ob
je

ct
iv

e
fu

nc
tio

n
- [

m
]

Gravel Concrete GrassGravel Concrete GrassGravel Concrete Grass

Romea controller
Model gain tuner

Full NN gain tuner

Figure 5.22: The objective function, and the objective function after the initial lateral error.

88 CHAPTER 5. GAIN TUNING IN DYNAMIC CONTEXT

The objective function used to train the neural network, agrees with the surface error. Where
the Full NN gain tuner method reaches a 37.5% decrease in the objective function, and where
the Model gain tuner method reaches a 36.6% reduction in the objective function. If we do not
include the starting error, the results is a 52.3% reduction and 29.8% reduction respectively.

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

1

2

3

Ga
in

 v
al

ue
s

Gravel Concrete GrassGravel Concrete Grass

kd
kp

Model gain tuner
Full NN gain tuner

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

Ho
riz

on
 -

H
[s

]

Gravel Concrete GrassGravel Concrete Grass

Model gain tuner Full NN gain tuner

Figure 5.23: The gains, and the horizon.

The neural network gains seem to be much higher than the expert & Model gain tuner
gains. However a strong modulation between kp and kd can be observed, allowing the method to
dynamically update the damping factor ξ, which in turn explains the higher performance using

higher gains, as a damping factor below ξ <
√
2
2 is considered unstable, but can allow for a faster

convergence to the trajectory if used correctly.

Trajectory 2

The experiments with the methods were then followed up with runs at 4m.s−1 over the second
trajectory: We can see, the error over the entire trajectory is significantly lower with the Full NN

60 40 20 0 20 40
x position - x_pos [m]

10

20

30

40

y
po

sit
io

n
- y

_p
os

 [m
] Trajectory path

Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

3

2

1

0

1

La
te

ra
l e

rro
r -

 y
 [m

]

Model gain tuner
Full NN gain tuner

Figure 5.24: The trajectory (on the left), and the lateral error (on the right). Over the total
trajectory

gain tuner method when compared to the Model gain tuner method.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

20

40

60

Su
rfa

ce
 E

rro
r -

 [m
2] Model gain tuner Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

20

40

60

Su
rfa

ce
 E

rro
r -

 [m
2] Model gain tuner Full NN gain tuner

Figure 5.25: The surface error Aerror, and the surface error Aerror after the initial lateral error.

A result that is reflected clearly in the surface error. Where the Full NN gain tuner method
reaches a 43.7% reduction in the surface error when compared to the Model gain tuner method.
If we do not include the starting error, the result is a 42.9% reduction.

The objective function used to train the neural network, agrees with the surface error. Where
the Full NN gain tuner method reaches a 31.7% decrease in the objective function when com-
pared to the Model gain tuner method. If we do not include the starting error, the results is a
34.2% reduction.

5.3. REAL WORLD EXPERIMENTS 89

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

4

5

Ob
je

ct
iv

e
fu

nc
tio

n
- [

m
]

Model gain tuner Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

4

Ob
je

ct
iv

e
fu

nc
tio

n
- [

m
]

Model gain tuner Full NN gain tuner

Figure 5.26: The objective function, and the objective function after the initial lateral error.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

Ga
in

 v
al

ue
s

kd
kp

Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

Ho
riz

on
 -

H
[s

]

Model gain tuner Full NN gain tuner

Figure 5.27: The gains, and the horizon.

As seen for the trajectory 1, the neural network gains seem to be much higher than the Model
gain tuner gains, and an online adaption of the damping factor can be observed.

Overall, we can see that the neural network parameter tuning method, is capable of matching
and even outperforming the proposed Model gain tuner method at 4m.s−1. However, it should
be noted that the training of the neural network was unable to exceed 4m.s−1. It is assumed that
this limitation is due to the task being too difficult over the training trajectories at higher speed.
As such, the future experiments also modulate the maximum speed.

Conclusion

Overall, the real world experimental results show that the performance visible in simulation is
transferable to reality. This is shown though the performance of the Full NN gain tuner which
out performs considerable the constant gain and Model gain tuner . This is partly explained
thanks to the strong modulation of the damping factor ξ, where the Full NN gain tuner punc-

tually selects a ξ <
√
2
2 which is considered oscillatory, in order to converge more quickly to the

desired setpoint.
These observations are supported by supplementary experimental results, provided in the ap-

pendix section A.8. This section only shown the most representative results of the numerous field
experiments achieved during the PhD. Numerous experimental trials have been achieved during
the PhD. The results provided in this section only shows the most representative trials, allowing
an objective quantitative analysis2.

Nevertheless, as can be seen from modulating the gains, the performance of the methods depend
on a set gain and velocity pair. Indeed the optimal gain varies with respect to the speed, and
inversely the optimal speed depends on the value of the control gains. Furthermore, there are
situations where no valid gains exist for certain speeds (e.g. a velocity too high for a corner that
causes a spin-out). As such, the following section considers the simultaneous speed and gain tuning,
in order to improve the performance further, and allow for a greater adaptability with respect to
the environment.

2As a few trials needed to be discarded due to implementation bugs.

Chapter 6

Simultaneous steer and speed control

The control parameters of a system can often be defined as a function of time or distance to
convergence. As such, a given gain can be defined with an optimal speed, and inversely a given
speed can be defined with an optimal gain. Naturally this means that selecting an optimal speed
in real-time can be a corollary of real-time gain tuning. As such, tuning both the speed and the
gains simultaneously might lead on average to lower errors with higher speeds. The following
chapter will describe how to achieve such tuning for both speed and gains, while demonstrating
the performance of the methods shown previously.

6.1 The problem shift due to additional speed control

When adding the speed to the steering control output, the desired task must be changed. Up until
now, the task has been to follow a trajectory as accurately as possible, more formally described
as following the trajectory while minimizing the lateral and angular error. This task is not longer
valid when the speed and steering are both considered in tandem, as higher speeds will likely induce
higher lateral and angular error. Meaning that the desired control speed for minimizing the lateral
and angular error is a speed that is as low as possible. Adding speed control changes the problem
of path tracking, as high speed and low error are antagonist in nature.

As such, a better suited task would be following a trajectory while authorizing a corridor of
errors. This mirrors real world conditions, such as driving where small error are tolerated in order
to drive at correct speeds. As such, an allowed error metric and objective function should be used
to define a valid path following, instead of minimizing the overall surface error.

Methods for adjusting the longitudinal speed of the robot in real time exist, such as [90] which
is based on a second order approximation on the acceleration constraints, [91, 92] which are based
on models that only consider the curvature and speed limit, and [93, 94, 95] which consider the
grip conditions, but are based on simplified models.

Overall, the existing works on speed tuning for complex environments with dynamic grip con-
ditions are sub-optimal due to the use of simplified models, which do not integrate the evolution
of the grip conditions over time. As such, one could consider applying a neural network output for
tuning this target speed in an end-to-end fashion similarly to NN controller , in order to learn a
control policy that is model free and is able to adapt the speed to the grip conditions accurately.

In order to integrate a speed cost penalty to the objective function, a new sub-objective function
must be defined as increasing when the speed is decreased on average across the trajectory. For
this, the following objspeed is proposed (and derived fully later on):

objspeed =
T

sN

Where T is the total time taken over the trajectory, sN is the total length of the trajectory, and
as such objspeed describes the inverse of the average speed projected to the trajectory.

When using the previous objective function defined in equation 4.3, the following extension can
be inferred:

obj1,speed = objerr + ksteerobjsteer + kspeedobjspeed

91

92 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

Or more completely:

obj1,speed =
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s+ kspeed
T

sN

However an unusual problem arises, as the different methods tested will tend to learn different
behavior from one an other. In practice this shows up as starkly different speeds and error com-
promises showing up, even with identical objective function and parameterization. This issue was
determined to have originated due to the linearization of the different sub objectives in the objec-
tive functions (i.e. summing with weights), which leads to different solutions being found on the
Pareto Front.

Pareto Front

In multiobjective optimization, there is a surface known as the Pareto Front [96] in the objective
space. It represents the set of solutions that are attainable using the optimizer and given system.
We desire to reach a high Pareto optimality, i.e. Pareto optimality is reached when improving one
objective, must be degrade for an other objective.

Up until now, the Pareto Fronts have been convex (as shown in Figure 6.1), which means that
the sub objective functions (i.e. objerr & objsteer) increase and decrease in tandem, leading to a
common low error point generating a convex shape. The convexity of the sub objective functions
means that when a sub objective function is minimized, the other sub objective function tends to be
minimized as well, and not maximized. In our case, this shows up as when the lateral error objerr
is low, then the steering error objsteer tends to be low as well as we are following the trajectory.

obja

objb

obja

objb

Figure 6.1: Two kinds of Pareto fronts: On the left the convex kind. On the right the non-convex
kind.

When introducing a new target objspeed that is minimized when the average speed is maximized,
the Pareto Front is no longer non-convex (as shown in Figure 6.1). This is due to the antagonistic
aspects of the speed and the errors, a higher speed almost always means a more dynamic system,
and as such should be harder to control, which implies a higher error value as a compromise.
Leading to two simple solutions, a simple path following at low speed (no dynamic effects), and
path following that is ignored with higher speeds, leading to a complex solution that is hard to
obtain between the two extremes. This means that in order to maximize the speed (i.e. minimize
objspeed), the system must make a trade off by increasing the error objerr. This problem does
not prevent training of the system and the method, but it does increase the complexity of a
middle ground solution and as such the variance of the solutions found, which drastically decreases
the comparability of the methods, as they are effectively optimizing different targets. One could
considered that a speed objective function leading to a convex Pareto could exist, however this
would imply that this function would increase the speed when the errors decrease, which would be
contradictory as increasing the speed will inherently degrade tracking performance, so a speed and
tracking objective seem antagonistic in nature. As such, a different linearization method must be
used.

First the convex case with a weighted summing of the sub objective functions (as used up until
now) is explored, in order to show why the objerr & objsteer did not show these issues. Then, the
non-convex case with a weighted summing of the sub objective functions is used, in order to show
why the objerr & objspeed generate different solutions when different configurations of the training

6.1. THE PROBLEM SHIFT DUE TO ADDITIONAL SPEED CONTROL 93

environment is used. Then finally a Weighted Hypervolume Scalarization (or Weighted Chebyshev
Scalarization) is used, in order to show the advantages that this scalarization of the sub objective
functions brings.

Convex case

The Pareto Fronts explored up until now have been convex in nature. When applying a weighted
sum of sub objective functions objsum =

∑
i wiobji, a hyperplane is drawn in the objective space,

which is then minimized by moving the hyperplane towards the minimal points of the sub objective
functions.

When different methods are used to control the robot, the Pareto Front naturally changes shape
and position, due to the changes in the optimization task that were causes by allowing or disallowing
some behavior as a side effect of changing control methods. Figure 6.2 shows an example of two

obja

objb

obja

objb

Figure 6.2: Two similar Pareto Fronts that are explored using the weighted sum scalarization. On
the left: during training. On the right: Once the optimizer has converged with the crosses denoting
the optimal solution found.

Pareto Fronts that are close but different, similarly to when different control methods are used. As
shown, the solutions found are consistent as the minimums are close, which means that their trade
offs between the sub objective functions are very similar. This explains why similar behavior is
derived from the optimized solution, even when different control methods are used with the robot.

Pareto Front (non-convex case)

However, when the Pareto Fronts are non-convex in nature are used with a weighted sum of
sub objective functions objsum =

∑
i wiobji, considerably different solutions are found even with

similar Pareto Fronts. Figure 6.3 shows an example of two Pareto Fronts that are close but

obja

objb

obja

objb

Figure 6.3: Two similar Pareto Fronts that are explored using the weighted sum scalarization. On
the left: during training. On the right: Once the optimizer has converged with the crosses denoting
the optimal solution found.

different, similarly to when different control methods are used. As shown, the solutions found
are quite different as the minimums are not close, which means that their trade offs between the
sub objective functions are different, which causes different optimization targets to be learn by
the neural network. This is due to the linear nature of the scalarization which is allowed for any

94 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

solution to be equivalent, as long as the weighted sum is identical, which allows for a very high
objerr as long as objspeed is low and vice-versa.

Pareto Front (non-convex case) with hypervolume scalarization

This problem has been studies in the literature [97, 98], and the solution to this is to use a
different scalarization method. In particular the Weighted Hypervolume Scalarization (or Weighted
Chebyshev Scalarization) is explored, it consist of using L∞ normalization of the sub objective
functions, which equates to taking the weighted maximum of the sub objective functions objsum =
maxi(wiobji). The weights assigned to the sub objective functions describe an optimization path,
known as a Utopian vector where all the solutions along this path share the same trade offs between
the objective functions, as described by the weights.

One could consider this scalarization could generate sub optimal solutions, as one of the sub
objectives could be minimized but is not due to the max overriding it with a higher sub objective.
However, this should not occur as this situation implies the higher sub objective can no longer
be minimized but the other one can, which would imply that the sub objective functions are
independent of each other near the minimum. In our case, we know that the closer the solution to
the minimum, the higher the speed and the lower the error, which are not independent in dynamic
environments.

obja

objb

obja

objb

Figure 6.4: Two similar Pareto Fronts that are explored using the weighted hypervolume scalar-
ization. On the left: during training. On the right: Once the optimizer has converged with the
crosses denoting the optimal solution found.

Figure 6.4 shows an example of two Pareto Fronts that are close but different, similarly to
when different control methods are used. As shown, the solutions found very close, and share the
same Utopian vector, which means that they have the same trade off between their sub objective
functions, which causes near identical optimization targets to be learn by the neural network. This
allows for our methods to be comparable regardless of how the control method changes, as the
average speed should increase when the average allowed error decreases.

New Objective function

Due to the limitation of linear scalarization and the allowed error described previously, a novel
objective function is required.

First the allowed error needs to penalize an error that is outside of a given lateral error limit.
This is already done in the high error penalty encoded in kyi described in section 4.1:

kyi =

{
ky low if |yi|≤ ylim
ky high else

and so the objerr sub objective ends up identical.

objerr =
1

sN

N∑
i=0

|kyiyi|∆s [m] (6.1)

6.2. EXPERIMENTAL SETUP 95

The speed term needs to encode a penalty for every time step taken, normalized over the length
of the trajectory. This means if the method takes more time, the speed penalty will be higher:

objspeed =
1

sN

N∑
i=0

∆t =
T

sN
[sm−1] (6.2)

Interestingly, the integration of a constant penalty over time is proportional to the total time,
which reduces this penalty to the inverse of the average speed taken over the whole trajectory.

For the linear scalarization, the objerr and objsteer are convex , as such the previous objective
function obj1 can be reused:

obj1 = objerr + ksteerobjsteer [m] (6.3)

However, for the speed term objspeed the Hypervolume scalarization needs to be used:

obj2 = max(obj1, kvobjspeed) [m] (6.4)

Or more completely:

obj2 = max

(
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s, kv
T

sN

)

Where kv describes the compromise between the objerr & objsteer objective functions, and the
objspeed objective function, the higher kv is the stronger the low speed penalty is, and as such the
faster the method should be. In practice, kv is set to 1.0 as a lower bound, and 1.25 as an upper
bound1.

A slight change is also added to the Hypervolume scalarization, where a small linear scalariza-
tion factor is added, in order to avoid issues if the Pareto Front is not convex and to improve the
learning [97]. This gives us our final objective function:

obj3 = obj2 + γ(obj1 + kvobjspeed) [m] (6.5)

Or more completely:

obj3 = max

(
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s, kv
T

sN

)

+ γ

(
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s+ kv
T

sN

)

Where γ is a small value defined as 0 < γ ≪ 1, usual set at γ = 0.01.

6.2 Experimental setup

Control loop setup

The neural network predicts the control parameters in real-time. In this case, they are the steering
control gains, the horizon, and the target longitudinal acceleration (that is then integrated into a
target speed), which are then passed to the controllers before they calculates the steering angle and
wheel acceleration. This is shown in the figure 5.6 where the neural network takes as inputs the
errors, curvature, and speed, then returns the steering control gains, horizon, & acceleration. The
control law that is used in tandem is the Romea control law, in order to preserve the comparability
with the previous methods.

The neural network is trained in a simulation using the CMA-ES optimizer depicted as the
Optimizer in the figure 6.5, which takes as input the objective function value and returns the
neural network parameters. The neural network takes as input the same information as an existing
steering controller, which is the lateral error, angular error, curvature, future curvature (20 sampled

1kv was determined by increasing it slowly from zero, until it reached a similar speed to the previous methods
(kv = 1.0), then increased until 8m.s−1 was reached in simulation (kv = 1.25).

96 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

Steer Controller Robot

Observer

Tracking
errors

Errors Control input

MeasuresState

Optimizer

Param tuner

Errors, state,
covariance,
curvature

Objective
function

Target Speed

Steer Gains,
horizon

Parameters

Figure 6.5: Overview of the proposed method.

points over 5s horizon), speed, and the robot’s steering state. In addition it also takes as inputs
the dynamic parameters, such as the cornering stiffnesses (CR/CF), the sliding angles (βf/βr),
and the sensors accuracy encoded in the Kalman covariance matrix (C). From these inputs, the
neural network is then expected to output the control parameters and the speed setpoint. An
Extended Kalman Filter (EKF) [53] is used as part of the Observer in order to filter the noise
from the robot’s sensors, determine the sensor accuracy, and improve the accuracy of the tracking.
Following the EKF, a sliding angle observer is used [50] in order to estimate the front and rear
sliding angles, which are needed to estimate the front and rear cornering stiffnesses. The latter are
estimated then using a cornering stiffness observer [89].

Each method uses a neural network, but in different ways:

• NN controller : Neural network outputs the steering angle and the target speed.

• Delta NN ctrl : Neural network outputs a corrective term for the steering angle and the
target speed.

• Model gain tuner : Neural network outputs only the target speed, with the steering and
gains identical as described previously (section 5.1)

• Full NN gain tuner : Neural network outputs the Kp gain, Kd gain, and prediction horizon
H for the Romea steering controller, along with the target speed.

Using this, both the speed and the steering can be modulated with respect to the external con-
ditions, in real time. The methods are all retrained using the new objective function described
above, with the new configuration.

Metrics

The objective function used is the one previously defined for this section, shown in the equa-
tion (6.5).

obj3 = max(objerr + ksteerobjsteer, kvobjspeed) + γ(objerr + ksteerobjsteer + kvobjspeed)

Due to the change in task from path following to path following in a corridor, the The metric
used for the analysis of the results needs to be changed. If the Aerr is used, then the methods
would be penalized unfairly for high errors within the allowed corridor. As such, we define the
metric for the surface error outside the valid corridor as:

Aover =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)
1|y1|>ylim

∣∣∣∣∣ ∆t [m2] (6.6)

Where 1|y1|>ylim
is the indicator function that is equal to 1 when the condition |y1|> ylim is met,

otherwise it is equal to 0. This metric is used in order to validate the performance of the methods,
without resorting to the objective function. Indeed, when a reinforcement learning agent trains
to optimize a function, it is possible that the said agent might exploit the objective function in
order to minimize it, without achieving the desired behavior. As such, using a different metric to
measure performance allows for minimal bias when comparing the methods.

6.3. SIMULATED RESULTS 97

Furthermore, as we are also altering the speed we define a speed metric:

v̄ =
1

TN

N∑
i=0

|vi| ∆t [m s−1] (6.7)

Where TN is the total time spent over the trajectory. This metric defines the average speed over
time across the trajectory.

Training details

The neural network is trained over 5 unique trajectories (estoril5, estoril7, estoril910, line, and
spline5 as shown in A.12) twice with two varying scaling factors of 1 and 2 (this is done so longer
trajectories are also tested with lower curvatures), with a maximum speed of 2.0, 4.0, 6.0, and 8.0
m.s−1, with varying grip conditions (cornering stiffness ranging from 7000 to 30000). Properties
of the robuFAST experimental mobile platform (detailed in section 5.3) are used as parameters: a
wheelbase of 1.2m, 430kg of weight, a max steering angle of 15◦, and a max acceleration 0.5m.s−2

6.3 Simulated results

The trained method, were tested in the simulation with the maximum achievable speed of 8.0m.s−1,
trajectories, and grip conditions as used in the training of the trained method. These tests were
run 100 times each in order to get a consistent mean and variation for each method.

Quantitative Analysis

A first set of simulated runs was computed using the trajectories described in the appendix A.12.
From this, the tables 6.1 and 6.2 were obtained.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

NN
controller

Aover 0.52 (±0.84) 1.11 (±0.98) 15.44 (±2.81) 4.46 (±2.12) 0.34 (±0.61)
v̄ 2.22 (±0.09) 2.29 (±0.10) 1.82 (±0.04) 1.39 (±0.09) 2.45 (±0.09)

Delta NN
ctrl

Aover 13.59 (±8.92) 7.14 (±6.53) 91.81 (±62.40) 3.79 (±2.58) 16.87 (±15.88)
v̄ 3.09 (±0.14) 2.76 (±0.11) 3.12 (±0.40) 1.85 (±0.09) 3.50 (±0.30)

Model gain
tuner

Aover 0.21 (±0.54) 1.23 (±1.39) 19.86 (±2.15) 2.24 (±1.73) 0.00 (±0.00)
v̄ 3.78 (±0.21) 3.03 (±0.22) 2.64 (±0.28) 2.13 (±0.11) 5.24 (±0.14)

Full NN
gain tuner

Aover 0.32 (±0.62) 0.88 (±1.40) 17.05 (±3.71) 1.69 (±1.55) 0.00 (±0.07)
v̄ 3.75 (±0.25) 3.05 (±0.28) 2.72 (±0.33) 2.11 (±0.19) 5.18 (±0.11)

Table 6.1: Mean speed (v̄) in [m.s−1] and Surface error outside of the corridor (Aover) in [m2] for
each method and trajectories used during training, with an initial error of 0m.

They describes the Surface error of the corridor Aover from the equation (6.6) and the average
speed v̄ from the equation (6.7), for each method for all the trajectories used during the training
along with the (Big) variants, with an initial error of 0m. The underlined and bold values mean
that the result is significant and has a p-value below 10−3, determined using the Welch-t test [81].

Overall, the Full NN gain tuner method had the lowest error of all with an Aover of 1.91m2,
where as the NN controller had an error of 2.64m2 (a 38.1% reduction), Delta NN ctrl had
an error of 7.91m2 (a 314.0% reduction), and the Model gain tuner had an error of 2.42m2 (a
29.5% reduction). When the average speed is considered, the Full NN gain tuner and the Delta
NN ctrl methods had the highest average speeds with 3.09m.s−1 and 3.10m.s−1 respectively (a
0.0556% difference when not rounded to 3 significant digits), where as the NN controller had
an average speed of 2.06m.s−1 (a 33.3% increase), and Delta NN ctrl had an average speed of
2.53m.s−1 (a 18.4% increase).

Tables 6.1 and 6.2 show for the error outside of the corridor Aover, both the Model gain tuner
and Full NN gain tuner have an overall error that is quite low and comparable between each

98 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

NN
controller

Aover 1.64 (±0.83) 0.87 (±0.95) 2.47 (±1.53) 2.35 (±2.26) 0.33 (±0.61)
v̄ 2.43 (±0.09) 2.57 (±0.08) 2.39 (±0.09) 1.85 (±0.07) 2.45 (±0.09)

Delta NN
ctrl

Aover 23.77 (±15.38) 10.09 (±9.08) 15.74 (±13.71) 10.99 (±6.43) 16.60 (±15.64)
v̄ 3.29 (±0.16) 3.11 (±0.25) 3.02 (±0.07) 2.47 (±0.08) 3.49 (±0.30)

Model gain
tuner

Aover 0.07 (±0.35) 0.63 (±1.21) 1.25 (±1.75) 2.05 (±1.69) 0.00 (±0.00)
v̄ 4.85 (±0.22) 3.86 (±0.22) 4.55 (±0.23) 2.93 (±0.19) 5.24 (±0.14)

Full NN
gain tuner

Aover 0.41 (±1.48) 0.41 (±0.72) 1.50 (±2.25) 1.32 (±1.32) 0.01 (±0.09)
v̄ 4.93 (±0.24) 4.01 (±0.22) 4.59 (±0.16) 2.90 (±0.22) 5.18 (±0.10)

Table 6.2: Mean speed (v̄, the higher the better) in [m.s−1] and Surface error outside of the
corridor (Aover, the lower the better) in [m2] for each method and the scaled trajectories used
during training (Big), with an initial error of 0m.

other. With the Full NN gain tuner obtained a lower error over estoril7 and spline5, but has a
slight disadvantage over estoril5. Furthermore for the Mean speed, the Full NN gain tuner was
able to reach a very high speed in general, with the line trajectory favoring slightly the Model
gain tuner . Overall, it seems that the Full NN gain tuner out performed the previously
described methods. Indeed it was able to reach very high speeds, while being the method with the
lowest error overall.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

NN
controller

Aover 2.62 (±0.81) 3.25 (±1.01) 17.53 (±2.85) 4.39 (±1.52) 2.46 (±0.67)
v̄ 2.21 (±0.09) 2.27 (±0.10) 1.81 (±0.04) 1.36 (±0.08) 2.43 (±0.09)

Delta NN
ctrl

Aover 2.10 (±0.65) 3.39 (±1.14) 16.62 (±2.46) 3.13 (±1.65) 2.05 (±0.74)
v̄ 2.50 (±0.06) 2.15 (±0.07) 2.26 (±0.07) 1.60 (±0.07) 2.85 (±0.08)

Model gain
tuner

Aover 1.82 (±0.49) 2.18 (±0.92) 20.47 (±1.26) 2.87 (±1.32) 1.63 (±0.15)
v̄ 3.68 (±0.21) 2.94 (±0.21) 2.54 (±0.22) 1.91 (±0.08) 5.16 (±0.18)

Full NN
gain tuner

Aover 1.92 (±0.41) 2.27 (±0.99) 15.84 (±3.42) 2.66 (±1.20) 1.63 (±0.09)
v̄ 3.66 (±0.23) 2.95 (±0.25) 2.50 (±0.32) 2.03 (±0.16) 5.06 (±0.17)

Table 6.3: Mean speed (v̄, the higher the better) in [m.s−1] and Surface error outside of the corridor
(Aover, the lower the better) in [m2] for each method and trajectories used during training, with
an initial error of 1m.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

NN
controller

Aover 3.83 (±0.85) 2.98 (±0.96) 4.58 (±1.50) 4.45 (±2.23) 2.44 (±0.63)
v̄ 2.42 (±0.09) 2.55 (±0.08) 2.38 (±0.09) 1.84 (±0.07) 2.43 (±0.09)

Delta NN
ctrl

Aover 2.13 (±0.64) 2.77 (±0.81) 3.67 (±1.17) 2.71 (±1.00) 2.05 (±0.75)
v̄ 2.88 (±0.07) 2.52 (±0.03) 2.83 (±0.07) 2.07 (±0.04) 2.85 (±0.08)

Model gain
tuner

Aover 1.73 (±0.17) 1.87 (±0.60) 2.83 (±1.75) 2.77 (±1.31) 1.63 (±0.13)
v̄ 4.79 (±0.20) 3.78 (±0.22) 4.53 (±0.23) 2.82 (±0.18) 5.16 (±0.18)

Full NN
gain tuner

Aover 1.94 (±0.62) 1.94 (±0.53) 2.86 (±2.12) 2.66 (±1.22) 1.63 (±0.09)
v̄ 4.84 (±0.19) 3.95 (±0.21) 4.58 (±0.16) 2.85 (±0.20) 5.07 (±0.17)

Table 6.4: Mean speed (v̄, the higher the better) in [m.s−1] and Surface error outside of the
corridor (Aover, the lower the better) in [m2] for each method and the scaled trajectories used
during training (Big), with an initial error of 1m.

6.3. SIMULATED RESULTS 99

For the tables 6.3 and 6.4, the error seems similar between the Model gain tuner and Full
NN gain tuner with a slight advantage towards Model gain tuner which is able to outperform
slightly the Full NN gain tuner for the error over the estoril5 and estoril7 trajectories.

With an initial error of 1m, the performance shifts slightly. Overall, the Full NN gain tuner
method had the lowest error of all with an Aover of 3.41m2, where as the NN controller had an
error of 4.67m2 (a 37.0% reduction), Delta NN ctrl had an error of 3.97m2 (a 16.5% reduction),
and the Model gain tuner had an error of 3.89m2 (a 14.2% reduction). When the average
speed is considered, the Full NN gain tuner and the Delta NN ctrl methods had the highest
average speeds with 3.05m.s−1 and 3.05m.s−1 respectively (a 0.155% difference when not rounded
to 3 significant digits), where as the NN controller had an average speed of 2.05m.s−1 (a 32.8%
increase), and Delta NN ctrl had an average speed of 2.29m.s−1 (a 25.2% increase).

Tables 6.3 and 6.4 show for the error outside of the corridor Aover, both the Model gain tuner
and Full NN gain tuner have an overall error that is quite low and comparable between each
other. With the Full NN gain tuner obtained a lower error over estoril910 and spline5, but
has a slight disadvantage over estoril5 and estoril7. Furthermore for the Mean speed, the Full
NN gain tuner was able to reach a very high speed in general, with the line trajectory favoring
slightly the Model gain tuner . Overall, it seems that the Full NN gain tuner out performed
the previously described methods as with the 1m initial error. Indeed it was able to reach very
high speeds, while being the method with the lowest error overall. These results seems to be a
repeat of the previous ones, which is expected as the neural network that tunes the speed will
always slow down to minimize the surface error outside the corridor. As such, comparable results
are obtained regardless of the initial error.

Qualitative Analysis

Normal conditions

When focusing with a qualitative analysis over the spline5 trajectory, with 1m of initial error and
a maximal speed of 8m.s−1, the following results are obtained. Figure 6.6 shows all the methods

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140
Curvilinear abscissa - s [m]

0.25

0.00

0.25

0.50

0.75

1.00

La
te

ra
l e

rro
r -

 y
 [m

]

NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

Figure 6.6: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

over the trajectory and over the error corridor. Over the trajectory all the methods stay within
the corridor of allowed errors, which implies they are comparable in performance.

0 20 40 60 80 100 120 140
Curvilinear abscissa - s [m]

0.0

0.5

1.0

1.5

2.0

Su
rfa

ce
 E

rro
r -

 [m
2]

NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140
Curvilinear abscissa - s [m]

0.0

0.1

0.2

0.3

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
]

NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

Figure 6.7: On the left: The surface corridor error over the curvilinear abscissa. On the right: The
objective function over the curvilinear abscissa.

100 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

A result that is consistent over the surface corridor error and the objective function figure 6.7, as
the Full NN gain tuner and the Model gain tuner seems to obtain very similar performances
with minimal errors.

0 20 40 60 80 100 120 140
Curvilinear abscissa - s [m]

0

2

4

Sp
ee

d
- v

 [m
.s

1]

NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

Figure 6.8: The speed over the curvilinear abscissa.

A slight difference can be observed over the speed shown on figure 6.8, where the Full NN
gain tuner has an average speed of 3.01m.s−1, and the Model gain tuner has an average speed
of 2.89m.s−1 (a 4.08% difference). However, this difference is rather small, and can be due to the
variations in the path tracking. For the NN controller and the Delta NN ctrl , the speeds are
considerably lower than the Full NN gain tuner and the Model gain tuner methods, which
implies that they were not able to reach a higher speed threshold while staying within the allowed
corridor.

GPS loss

When focusing with a qualitative analysis over the spline5 trajectory, with 1m of initial error, a
maximal speed of 8m.s−1, and with a GPS loss occurring mid trajectory, the following results are
obtained. Figure 6.9 shows all the methods over the trajectory and over the error corridor. Over

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

Figure 6.9: On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa (GPS loss
zone in gray).

the trajectory the results seems almost identical to the previous results.

Figure 6.10: On the left: The surface corridor error over the curvilinear abscissa. On the right:
The objective function over the curvilinear abscissa (GPS loss zone in gray).

A result also observed over the Figure 6.10 which seems almost identical to the previous results.

6.3. SIMULATED RESULTS 101

Figure 6.11: The speed over the curvilinear abscissa (GPS loss zone in gray).

When the speed is considered, no significant difference can be observed between the average
speed of the Full NN gain tuner and the Model gain tuner methods. This seems to contradict
the results shown in the previous chapter, however this is likely due to the speed being reduced
when the GPS noise occurs at s = 70, allowing the Model gain tuner to minimize the error with
respect to the sensor accuracy degradation, similarly as the Full NN gain tuner was achieving
over tuning the control parameters alone.

Feature importance

In order to better interpret and understand the neural network, a gradient based Feature impor-
tance analysis can be used to determine which inputs where useful, and quantify the utility of
each input with respect to each output. See section A.4 for details on the theory and implementa-
tion of the gradient based Feature importance analysis for the neural network. Using the Feature
importance analysis, the following results are obtained:

NN controller

 [r
ad

]
dy

/dt
 [m

. s
1]

c(s
) [m

1]
d

/dt
 [r

ad
. s

1]
C xy

 [m
2]

F [
ra

d]
fut

ur
e c(s

) [m
1]

F [
ra

d]
y

[m
]

C F [
kN

. ra
d

1]
d

/dt
 [r

ad
. s

1]
v tar

ge
t [

m
. s

1]
R
 [r

ad
]

C R
 [k

N.
ra

d
1]

v
[m

. s
1]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%
 Im

po
rta

nc
e

uniform importance
SPEED
DELTA_F

Figure 6.12: The feature importance for the NN controller method for each input, denoted in
% of importance.

From the figure 6.12, the inputs that contribute the most the steering output of the NN
controller method are in order of importance the angular error denoted θ̃, the lateral error
denoted y, the rate of change of the angular error denoted dθ̃/dt, the rate of change of the lateral
error denoted dy/dt, the front sliding angle denoted βF , the front steering state denoted δF , and
the future curvature denoted future c(s), which contribute a total of 50% of the variations of the
steering output. For the speed output, the inputs that contribute the most in order of importance
are the immediate curvature denoted c(s), the sensor accuracy denoted Cxy, the rate of change

of the lateral error denoted dy/dt, the angular error denoted θ̃, the rate of change of the angular
error denoted dθ̃/dt, and the angular velocity denoted dθ/dt, which contribute a total of 60% of
the variations of the speed output. The rest of the inputs seems to have a uniform importance
distribution, which implies that most of the inputs are useful for predicting the outputs of the
neural network.

This shows that the NN controller is using the same inputs as previously shown, however is
has also included the sliding angles into its inputs for the steering outputs, and the speed seems

102 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

mostly dependent on the trajectory, the sensor accuracy, the tracking errors, and the angular
velocity. This means that the method is trying to avoid significant errors, while avoiding strong
angular error which would be indicative of dynamic effects, and slowing down when the GPS noise
is high.

Delta NN ctrl

d
/dt

 [r
ad

. s
1]

C F [
kN

. ra
d

1]
C R

 [k
N.

ra
d

1]
F [

ra
d]

dy
/dt

 [m
. s

1]
fut

ur
e c(s

) [m
1]

F [
ra

d]
C xy

 [m
2]

 [r
ad

]
d

/dt
 [r

ad
. s

1]
ct

rl,
F [

ra
d]

v
[m

. s
1]

v tar
ge

t [
m

. s
1]

R
 [r

ad
]

c(s
) [m

1]
y

[m
]

0

5

10

15

20

25

%
 Im

po
rta

nc
e

uniform importance
HORIZON
SPEED
D_DELTA_F

Figure 6.13: The feature importance for the Delta NN ctrl method for each input, denoted in
% of importance.

From the figure 6.13, the inputs that contribute the most the horizon output of the Delta
NN ctrl method are in order of importance the rate of change of the angular error denoted
dθ̃/dt, the rear cornering stiffness denoted CR, the front cornering stiffness denoted CF , the rate of
change of the lateral error denoted dy/dt, the front steering state denoted δF , the sensor accuracy
denoted Cxy, and the future curvature denoted future c(s), which contribute a total of 69% of the
variations of the horizon output. For the speed output, the inputs that contribute the most in order
of importance are the rate of change of the angular error denoted dθ̃/dt, the front sliding angles
βF , and the front cornering stiffness denoted CF , which contribute a total of 35% of the variations
of the speed output. The rest of the inputs seems to have a uniform importance distribution, which
implies that most of the inputs are useful for predicting the outputs of the neural network.

This shows that the Delta NN ctrl is correcting the steering and horizon using most of the
inputs available to it. Along with the speed it seems that the method is taking into account most
of the parameters to avoid significant errors, while having a speed tuning that depends mostly on
the dynamic parameters and the rate of change of the errors.

Model gain tuner

d
/dt

 [r
ad

. s
1]

v
[m

. s
1]

 [r
ad

]
c(s

) [m
1]

C R
 [k

N.
ra

d
1]

F [
ra

d]
d

/dt
 [r

ad
. s

1]
fut

ur
e c(s

) [m
1]

dy
/dt

 [m
. s

1]
ct

rl,
F [

ra
d]

v tar
ge

t [
m

. s
1]

C xy
 [m

2]
F [

ra
d]

R
 [r

ad
]

C F [
kN

. ra
d

1]
y

[m
]

0

2

4

6

8

10

12

%
 Im

po
rta

nc
e

uniform importance
SPEED

Figure 6.14: The feature importance for the Model gain tuner method for each input, denoted
in % of importance.

For this case, only the speed is controlled using a neural network, as such for the feature
importance only the speed is analyzed. From the figure 6.14, the inputs that contribute the most
the speed of the Model gain tuner method are in order of importance the rate of change of the

6.3. SIMULATED RESULTS 103

angular error denoted dθ̃/dt, the speed of the robot denoted v, the angular error denoted θ̃, the
immediate curvature denoted c(s), the rear cornering stiffness denoted CR, and the front sliding
angle denoted βF , which contribute a total of 59% of the variations of the speed. The rest of
the inputs seems to have slowly decreasing but on negligible importance, which implies that most
of the inputs are useful for predicting the speed, with a noticeable exception for the lateral error
denoted y.

This shows that the speed tuning for the Model gain tuner method is basing the speed
prediction mostly on the angular error, the robot’s speed, the dynamic grip parameters, the angular
velocity, and the trajectory. This allows for a speed that takes into account not only the trajectory’s
shape, but also the current state of the robot’s errors, and what is allowable dynamically due to
the grip conditions. This allows for a very complex and rich speed prediction.

Full NN gain tuner

d
/dt

 [r
ad

. s
1]

F [
ra

d]
 [r

ad
]

C R
 [k

N.
ra

d
1]

C xy
 [m

2]
c(s

) [m
1]

fut
ur

e c(s
) [m

1]
ct

rl,
F [

ra
d]

v tar
ge

t [
m

. s
1]

R
 [r

ad
]

d
/dt

 [r
ad

. s
1]

F [
ra

d]
v

[m
. s

1]
dy

/dt
 [m

. s
1]

C F [
kN

. ra
d

1]
y

[m
]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%
 Im

po
rta

nc
e

uniform importance
KP
KD
HORIZON
SPEED

Figure 6.15: The feature importance for the Full NN gain tuner method for each input, denoted
in % of importance.

For this strategy, many parameters are modulated by the neural network, specifically the Kp

& Kd gains, the control prediction horizon, and the target speed. As such, the feature importance
is done over those parameters and analyzed. From the figure 6.15, most of the inputs contribute
to the overall outputs of the Full NN gain tuner method, with the exception of the lateral error
denoted y. For each output however some outliers stand out. For the speed, the most important
inputs are in order the rate of change of the angular error denoted dθ̃/dt, the sensor accuracy
denoted Cxy, the angular error denoted θ̃, and the rear cornering stiffness denoted CR. For the
Kp gain, the most important inputs are in order the steer control denoted δctrl,F , the rear sliding

angle denoted βR, the angular error denoted θ̃, the rear cornering stiffness denoted CR, the rate
of change of the angular error denoted dθ̃/dt, and the sensor accuracy denoted Cxy. For the Kd

gain, the most important inputs are in order the rate of change of the angular error denoted dθ̃/dt,
the rear cornering stiffness denoted CR, the steering state denoted δF , the angular error denoted
θ̃, and the target speed denoted vtarget.

This shows that the Full NN gain tuner is correcting the control gains and speed using most
of the inputs available to it. This allows for a more complex prediction of the speed, gain, and
horizon. Furthermore, the neural network is able to specialize the inputs for each output, such as
the steering control and sliding angle for the Kp gain, which can be used as a good indicator of
future lateral errors. The angular error, the sensor accuracy, and the cornering stiffness is then
used for the speed control, allow it to depend on not only the grip conditions, but also the sensor
quality and the state of the robot’s tracking performance. And finally the speed, the angular error,
steering state, cornering stiffness, and curvature are used for the Kd gain, allowing it to adapt
to the trajectory, the speed, and the tracking performance of the robot. All these allows for a
nuanced and rich adaptation of the control law in real time, using all the information available in
the control loop.

Validation of the results over test trajectories

In order to validate the results shown previously, additional tests need to be run in conditions
that were not present during the training phase. This is done to verify that the method has not

104 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

over-fitted to the training set, and has indeed generalized to novel situations.
The following tables show the mean surface error generated by each method over multiple runs

for each speed and trajectory:

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

NN
controller

Aover 15.01 (±4.37) 1.97 (±1.18) 2.89 (±1.32)
v̄ 2.20 (±0.12) 1.99 (±0.08) 2.02 (±0.13)

Delta NN
ctrl

Aover 48.93 (±20.03) 9.42 (±5.90) 28.05 (±19.87)
v̄ 2.77 (±0.12) 2.45 (±0.06) 2.94 (±0.17)

Model gain
tuner

Aover 6.84 (±2.93) 0.78 (±1.05) 0.63 (±1.06)
v̄ 2.66 (±0.19) 2.69 (±0.14) 3.67 (±0.26)

Full NN
gain tuner

Aover 9.37 (±3.68) 0.88 (±0.79) 0.77 (±1.16)
v̄ 2.64 (±0.17) 2.70 (±0.17) 3.77 (±0.27)

Table 6.5: Mean speed (v̄, the higher the better) in [m.s−1] and Surface error outside of the corridor
(Aover, the lower the better) in [m2] for each method, over novel test trajectories, with an initial
error of 0m.

As shown in table 5.5, similar results are obtained when compared to the previous table 6.1
as the Full NN gain tuner and Model gain tuner both obtain comparable performances.
However, an unusual behavior occurs over estoril1 2, as explained in section 4.3.

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

estoril1 2 estoril11 12 estoril6

NN
controller

Aover 17.19 (±4.42) 3.70 (±1.10) 5.02 (±1.30)
v̄ 2.19 (±0.13) 1.97 (±0.08) 2.01 (±0.13)

Delta NN
ctrl

Aover 17.42 (±6.30) 4.17 (±1.56) 2.11 (±0.51)
v̄ 2.09 (±0.14) 2.09 (±0.06) 2.45 (±0.08)

Model gain
tuner

Aover 6.47 (±2.28) 2.20 (±0.86) 1.96 (±0.53)
v̄ 2.55 (±0.16) 2.60 (±0.14) 3.62 (±0.23)

Full NN
gain tuner

Aover 8.47 (±2.46) 2.43 (±0.68) 2.31 (±1.11)
v̄ 2.37 (±0.22) 2.63 (±0.15) 3.69 (±0.26)

Table 6.6: Mean speed (v̄, the higher the better) in [m.s−1] and Surface error outside of the corridor
(Aover, the lower the better) in [m2] for each method, over novel test trajectories, with an initial
error of 1m.

The table 5.6, shows similar results to the ones obtained when compared to the previous
table 6.3 as the Full NN gain tuner and Model gain tuner both obtain comparable perfor-
mances, while outperforming significantly the end-to-end NN controller approach. However the
same issue occurs as well over the estoril1 2 trajectory as shown previously in section 4.3.

These results show that the method is capable of obtaining comparable performance when
tested over novel trajectories that are not part of the training environment.

Analysis of the approach

Overall it seems that the Full NN gain tuner has very similar performance when compared
to the Model gain tuner method, as both are able to be adaptive to sensor accuracy and grip
conditions, allowing them to outperform the other reinforcement learning approaches. This is not
surprising considering the close results shown previously, and considering that the speed control
is able to adapt to additional information not available to the Model gain tuner method in the
previous chapter.

It seems as such that a higher burden has been placed on the speed variation in the Model gain
tuner method, as only the speed can be used to adapt the behavior of the robot, as opposed to

6.4. REAL WORLD EXPERIMENTS 105

the Full NN gain tuner method. Furthermore, as the Model gain tuner is based on the same
dynamic model used in the simulation, a high performance is not only expected but suspicious
as it could mean that the Model gain tuner is exploiting a systemic difference not present in
real world conditions. A systemic difference that might have been ignored by the Full NN gain
tuner method during training.

As such, a real world comparison is needed in order to fully compare both method, and con-
clude on the effectiveness of these method for adapting the mobile robot’s behavior in complex
environments.

The results shown in the following section explores the steering control methods previously
described, on the RobuFAST platform, in real world conditions.

6.4 Real world experiments

Experimental setup

In these experiments, the goal is to validate the simulated results are translatable to real world
experiments, and that the dynamic effect present in the real world experiment is correctly described
in the simulation. For this, the RobuFAST robotic platform detailed in section 5.3 is used for the
experiments.

The Trajectories

The platform was tested on two novel trajectories (Fig 6.16), that were not available during the
training process. This is done to illustrate the generalizing capabilities of the methods to unseen
trajectories. These trajectories where defined on location at the Montoldre experimental site,

Figure 6.16: Both trajectories on a x,y global reference. On the left, the first trajectory. On the
right, the second trajectory.

0 20 40 60 80 100 120 140 160
curvilinear abscissa - s [m]

0.1

0.0

0.1

cu
rv

at
ur

e
- c

(s
) [

m
1]

0 20 40 60 80 100 120 140 160
curvilinear abscissa - s [m]

0.2

0.1

0.0

0.1

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure 6.17: The curvature of both trajectories. On the left, the first trajectory. On the right, the
second trajectory.

which contains large terrains with variable ground types. Both trajectories contain a mixture of
grass and concrete for diversified ground types, and both trajectories are susceptible to naturally
occurring GPS losses, allowing for a sensor accuracy drop to occur. These experiments were done
over the span of 3 days.

106 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

Metrics

The objective function used is the one previously defined for this chapter, shown in the equa-
tion (6.5).

obj3 = max(objerr + ksteerobjsteer, kvobjspeed) + γ(objerr + ksteerobjsteer + kvobjspeed)

Since the task remains identical from the previous sections, the metric for the surface error
outside the valid corridor is used from the equation (6.6):

Aover =

N∑
i=0

∣∣∣∣∣vi cos(θ̃i)
(
yi +

vi sin(θ̃i)∆t

2

)
1|y1|>ylim

∣∣∣∣∣ ∆t

Furthermore, the speed metric is also preserved from the equation (6.7):

v̄ =
1

TN

N∑
i=0

|vi| ∆t

Real world results

Trajectory 1

When focusing with a qualitative analysis over the trajectory 1, with an initial error and a maximal
speed of 8m.s−1, the following results are obtained.

40 20 0 20 40 60 80 100
x position - x_pos [m]

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

Trajectory path
constant gain
NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

La
te

ra
l e

rro
r -

 y
 [m

]

constant gain
NN controller
Delta NN ctrl
Model gain tuner
Full NN gain tuner

Figure 6.18: On the left: The first trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

Figure 6.18 shows that as opposed to the previous section, only the Full NN gain tuner
and Model gain tuner methods are capable of staying within the error corridor. This implies
that the NN controller and Delta NN ctrl methods struggled to transfer the learned behavior
across from the simulation to real world conditions due to the systemic error.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

5

10

15

20

25

Su
rfa

ce
 E

rro
r -

 [m
2]

constant gain
NN controller
Delta NN ctrl

Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0

0.5

1.0

1.5

2.0

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
] constant gain

NN controller
Delta NN ctrl

Model gain tuner
Full NN gain tuner

Figure 6.19: On the left: The surface corridor error over the curvilinear abscissa. On the right:
The objective function over the curvilinear abscissa.

Figure 6.19 confirms this, and shows that the Full NN gain tuner and Model gain tuner
remain comparable, and have a lower error than the constant gain & speed method.

When observing the speeds on Figure 6.20, the average speeds are very comparable between the
Full NN gain tuner , Model gain tuner , NN controller , and the constant method, where as
the Delta NN ctrl method obtained the lowest speed of all. Furthermore, the position accuracy
shows that no significantly long signal loss occurred for the GPS sensor.

6.4. REAL WORLD EXPERIMENTS 107

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

4

5

Sp
ee

d
- v

 [m
.s

1]

constant gain
NN controller
Delta NN ctrl

Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0100

0.0125

0.0150

0.0175

0.0200

G
PS

 c
ov

ar
ia

nc
e

- C
xy

 [m
2]

constant gain
NN controller
Delta NN ctrl

Model gain tuner
Full NN gain tuner

Figure 6.20: On the left: The speed over the curvilinear abscissa. On the right: The position
accuracy over the curvilinear abscissa.

Trajectory 2

When focusing with a qualitative analysis over the trajectory 2, with an initial error and a maximal
speed of 8m.s−1, the following results are obtained.

60 40 20 0 20 40
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
] Trajectory path

Model gain tuner
Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.6

0.4

0.2

0.0

0.2

La
te

ra
l e

rro
r -

 y
 [m

]

Model gain tuner
Full NN gain tuner

Figure 6.21: On the left: The second trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa.

Figure 6.21 shows that only the Full NN gain tuner method is capable of staying within the
error corridor, with the Model gain tuner reaching error beyond 0.4m, twice the maximum error
corridor. This is likely due to the high curvatures, with strong transitions that lead the Model
gain tuner with the speed tuning to exceed the expected errors. This can be explained as the
longitudinal sliding effect and the weight displacement effect are not modeled in the simulation,
which would explain this higher error in real world conditions. This implies that the NN con-
troller and Delta NN ctrl methods were not able to transfer the learned behavior across from
the simulation to real world conditions due to the systemic error, as such they are not shown for
the second trajectory.

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

2

4

6

8

10

Su
rfa

ce
 E

rro
r -

 [m
2]

Model gain tuner Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

O
bj

ec
tiv

e
fu

nc
tio

n
- [

m
] Model gain tuner Full NN gain tuner

Figure 6.22: On the left: The surface corridor error over the curvilinear abscissa. On the right:
The objective function over the curvilinear abscissa.

A result that is clearly confirmed in the Figure 6.22, as the corridor surface error of the Full
NN gain tuner is around half of the corridor surface error of the Model gain tuner , even when
the last straight line is considered.

When considering the speed, the Full NN gain tuner has a much lower speed when compared
to the Model gain tuner in the transitions of the corners, which means that the errors are
naturally lower, preventing an out of corridor error. Furthermore, the position accuracy plotted

108 CHAPTER 6. SIMULTANEOUS STEER AND SPEED CONTROL

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0

1

2

3

4

Sp
ee

d
- v

 [m
.s

1]

Model gain tuner Full NN gain tuner

0 20 40 60 80 100 120 140 160
Curvilinear abscissa - s [m]

0.010

0.015

0.020

0.025

0.030

0.035

G
PS

 c
ov

ar
ia

nc
e

- C
xy

 [m
2] Model gain tuner Full NN gain tuner

Figure 6.23: On the left: The speed over the curvilinear abscissa. On the right: The position
accuracy over the curvilinear abscissa.

shows that a GPS loss occurred during the strongest transition over the curvature for the Full
NN gain tuner method, which did not cause the method to leave the allowed error corridor.

Analysis of the results

Overall, when transitioning from a simulated environment to a real world environment, a few key
aspects could be observed:

• First, each method suffered due to the systemic difference, either on the speed being lower,
or the error being higher or both. Nevertheless the methods using parameter tuning are able
to acheive behavior close to what is expected.

• Secondly, in real world conditions it seems that the order of the methods from worst to best
is Delta NN ctrl , NN controller , constant gain, Model gain tuner , and Full NN
gain tuner , which is not expected as the Delta NN ctrl method outmatched the NN
controller and constant gain method in the simulated environment.

• Thirdly, the Full NN gain tuner obtained results that are very close to the Model gain
tuner . Which shows that if an existing system is present, then using RL might not improve
it and it should be verified thoroughly. This further implies that replacing existing control
systems might not be optimal in all cases.

• Finally, it seems that the ”hands off” approach of assisting existing controllers without di-
rectly altering its output yielded the best performance in general, and still remained very
transferable between simulation and real world conditions.

These aspects are significant, as it means that as expected simulated results by them selves are
not sufficient for predicting real world performance in practice. Furthermore, it demonstrates the
importance of the adaptability of the control methods, as the real world system was dependent
on the weather, terrain type, and GPS quality which all hamper significantly the control methods
that are not adapting they behavior to them.

These observations are supported by supplementary experimental results, provided in the ap-
pendix section A.9. This section only shown the most representative results of the numerous field
experiments achieved during the PhD. Numerous experimental trials have been achieved during
the PhD. The results provided in this section only shows the most representative trials, allowing
an objective quantitative analysis2.

2As a few trials needed to be discarded due to implementation bugs.

Chapter 7

Conclusion and Future works

7.1 Conclusions

The initial question posed by this thesis was ”Are machine learning methods able to outperform
or improve existing control laws for wheeled mobile robots in complex environments?”. The aim
is to establish whether a hybrid AI control approach is capable of adapting the behavior of an
existing controller, using an AI to enhance said controller.

First, a machine learning approach needed to be determined. Indeed, many methods in machine
learning could be considered. When describing the methods in the state of the art of reinforcement
learning, a few obstacles occurred as the time difference reinforcement learning methods were not
able to converge over the desired path tracking task with the experimental platforms. This was
due to a triad of issues. The first was an observability issue as it is not trivial to accurately predict
the grip conditions for this system in real time. The second was the action delay from actuators
which caused a credit attribution problem. And the third was the inertia of the robot causing all
control inputs to be low pass filtered which hampered the exploration of these methods. Some
of these elements could be corrected, allowing these methods to train and converge over the task,
which can be considered for a future task.

Furthermore, the gradient methods struggled to converge as they have to determine the gradi-
ent by considering the observers, state estimators and the robot model in order to calculate the
gradient, which means that the resulting gradient used by the neural network is considerably noisy.
Which implies that the remaining methods that can work are the direct policy search methods that
are gradient free.

Out of those methods explored, CMA-ES returned the best performance in simulated test-
ing. However, as gradient free optimizers are used, careful consideration needed to be taken for
configuring the neural network, so that it would not suffer from the curse of dimensionality. For
CMA-ES, it was determined that three hidden layers of 64, 128, and 32 perceptrons was ideal,
as this achieved a good balance between a low number of parameters (approx 15000), and good
performance in our use case, and as such is the neural network used in the rest of the work.
However, other architectures that are not fully connected can be used with this configuration, but
such methods can be considered for future tasks.

With the appropriate machine learning method chosen, 3 strategies were explored for imple-
menting the AI: The first was the baseline method where the control law was completely replaced
with a neural network; the second was a corrective output from the neural network to the control
law’s steering output; and the third was a gain tuning approach.

From training the methods, it became clear that the existing control laws could be improved
using the same inputs directly available to them. Furthermore, from the explored methods of
integrating the neural network’s output to the control loop, it was determined that controlling
the steering output directly yielded sub-optimal results, as it was outperformed by the method
correcting the steering output. The corrective steering output method was itself then outperformed
by the gain and horizon tuning method. This showed that letting the neural network only control
the gains and horizon (which in turn reduced the impact of the neural network), increased the
performance by making it easy to adjust each gain with respected to the different inputs. (See

109

110 CHAPTER 7. CONCLUSION AND FUTURE WORKS

Figure 4.18).

The method that directly controls the steering output gave some interesting insights in simu-
lation, as the inputs used by the method seem to match the design of the existing control laws,
and it adapted to parameters that the theory suggests are useful (See Figure 4.5). Furthermore,
controlling the steering output directly caused a strong training difficulty, which can be a problem
if the task is too hard, and so an alternative to CMA-ES might need to be explored if this occurs.

Furthermore, it was shown that the adaptive gain system based on a neural network allowed
for better performance not only when changes in the environment occur, but also in a nominal
case as it is able to fully exploit the loop information when it does not need to be conservative over
the reactivity. This showed that the gain tuning approach allows for enough modulation from the
NN, without overriding the control law completely, which led to a higher performance when tested.

It was noted that comparing a gain tuning NN to other NN approaches was not sufficient, as
gain tuning methods do exist for control laws, even though it is a challenging approach. Therefore,
a model-based gain tuning method was developed for comparison, with dynamic parameters as an
additional input. From this, it was shown that the control parameter tuning is able to adapt the
behavior of the robot to the environment (as shown with the model gain tuning method), using
only the gains and not affecting directly the steering. Furthermore, the neural network based gain
and horizon tuning method was able to match and even exceed the model based gain tuning in
some cases.

However, it was shown that the neural network gain and horizon tuning method is sensitive to
the input, as the addition of inputs that lead to an incomplete internal model can degrade per-
formance. Furthermore, the neural network seemed limited by the information it could be given.
Indeed, if more information is available it would improve its performance, such as using data from
a camera, or improving the cornering stiffness observer. It was shown that pre-calculating the
cornering stiffness is useful for the neural network, even if the same inputs are available and the
neural network could rebuild this information if needed. This means that there is a clear advantage
to spending engineering time in order to correctly feed the neural network with relevant computed
inputs.

During experiments, it was noted that a maximum speed of 4m.s−1 was the upper limit for
the training, due to the grip conditions and trajectories being nearly non admissible dynamically
over 5m.s−1. As such, experiments with the tuning of the speed along with the hybrid steering
approach were conducted. Adding the speed to the steer control is not a trivial task, as it requires
integration as a function of curvilinear abscissa, and not a simple time integration. Furthermore,
the method is dependent on a good design of the objective function (see section 6.1 about Pareto
fronts).

A first approach had consisted in using neural networks only for speed control while cooperating
with a deterministic control, and a model based gain tuning adaptation. The thesis showed that
the neural network tuning only the speed can help to adapt the steering to errors, GPS losses, and
grip conditions (see Figure 6.14). This shows that an existing method of gain tuning is as good as
a neural network based method under ideal circumstances, showing that the neural networks are
not the only valid approach for solving these types of problems.

Important conclusions from the real-world experiments are that more complex adaptive neural
network systems are sensitive to systemic error, and that the greater the control and dependence
of the neural network on the control output, the more likely it is that it will over-adapt to the
simulated environment, leading to significant problems in real-world conditions. This indicates
that the parameter tuning neural network has good transferability to real-world conditions, when
compared to direct steering control using a neural network.

The field experiments also revealed significant problems, as the methods are limited to the
simulated model, which does not take into account the weight displacement and longitudinal
sliding of the physical system. A neural network hybrid model or a more complex model could be
envisioned for simulation training.

Overall, when answering the initial question: Adapting the control parameters is not a trivial
task, as they often depend on variables that can only be known in real time. For this, control
laws have been often tuned to match the expected value of these variables, leading to sub-optimal

7.2. FUTURE WORKS & PERSPECTIVES 111

performance. The work presented previously shows the capacity of machine learning methods, in
particular neural networks tuned by evolutionary strategies, to determine control parameters in
real time, that out perform the model based control parameters methods and constant control
parameters methods. These methods have shown to be able to find an effective mapping between
the observed robotic state and the quasi-optimal control parameters.

It has been shown to be able to adapt to changes in the environment, encoded through the
state estimator and observers, such that the method improves the task performance in real world
experimentation without destabilizing the robot. We have also validated the importance of the
observed values (sliding angles and cornering stiffness) with respect to the performance, and showed
that including this information allows for higher performance when compared without.

These methods have shown limitations with respect to the simulated model. As it has been
shown previously, higher speed means more dynamic phenomena which is harder to accurately
model. For this, more work is required to close the reality gap, such as a more complex simulated
model.

All these comments are derived from simulated and experimental results achieved in different
conditions (soil, trajectory, weather, ...). During this thesis, 20 days of real world experimental
trials have been achieved, in order to validate and affirm the results presented in this PhD.

Furthermore, these methods have the capacity to generalize to different types of control pa-
rameters such as the horizon of a predictive controller, or to generalize to different types of gains
such as the observation gains. All these aspects show the promising capabilities of the methods,
hence the future works that can be envisioned and that are currently being considered.

7.2 Future works & perspectives

From these conclusions, a few paths can be observed on the horizon for future works.

Tuning the model based gain tuner

When constructing the model based gain tuner, two strong hypothesis were implied. The first was
that the optimal dampening of the system ξ is always 1. And the second was that the sampling
frequency N satisfying the Shannon condition was constant. However, as shown by the neural
network gain tuning methods this is not the case. As such, the value of N which is proportional
to the Kp gain, and the dampening ξ which is proportional to the Kd gain, can be modulated in
real time by a neural network, allowing for a higher level of tuning of the control system. This is
very important, as it is the process of trying to find novel ways of integrating neural networks into
existing and complex control system in a symbiotic way, that further insights into neural networks
and control laws can be determined, through observing which inputs are used and how the neural
network learns. With this, the stepping stones needed in order to control complex robots for
complex tasks can be envisioned to be realistically attainable.

Improving the observations

One of the limiting factors of the approach used up until now, has been the observability of certain
dynamic elements of the system. As such, the addition of a sensor or a more complex observer can
be considered, in order to provide more accurate information to the neural network, which in turn
allows for a more accurate path tracking. Indeed, additional information that is critical to predict
the future behavior of the system (such as using a camera to observe the terrain quality in front
of the robot) is required, however this information can only be acquired via additional sensors.
The interpretation of these sensors or their preinterpreted information could be used to allow for
higher performance.

Alternate architecture for integrating the neural network

The neural network has been integrated a total of three different ways in this work. However, it
is clearly not limited to this, and additional ways of integrating neural network can and should be
explored. For example a neural network that acts as a Selector network for two existing controllers,
allowing for specialized control laws to be used in generalized control tasks.

112 CHAPTER 7. CONCLUSION AND FUTURE WORKS

Steer Controller 1

Steer Controller 2

Robot

Observer

+Tracking
errors

Errors
Control input

MeasuresState

Optimizer

Param tuner

Errors, state,
covariance,
curvature

Reward
Target Speed

Weight

Parameters

Figure 7.1: Overview of the proposed method.

In this case, special consideration should be taken for the objective function, in order to guar-
antee that the neural network will achieve smooth transitions between the control laws (or an
additional output from the neural network could be added to address this), where stability and
smooth control are desired above performance.

Improving the simulation for additional dynamics

As seen in the results, if the speed is varied over time, then the model used is no longer valid
as it does not take into account any longitudinal dynamics. Furthermore, it does not take into
account any weight displacement due to acceleration and deceleration, which can vary the steering
characteristics of the robot. As such, future works are planned with a more realistic model. A
possible alternative to consider, could be to complete the dynamic model, using a supervised neural
network. Where data from real world conditions could be measured, and used to predict the future
state in a supervised manor directly. Care needs to be taken in order to avoid the noise permeating
the data, such as using a 7 point derivative.

Predicting the settling time with a neural network, for agnostic controller
gain tuning

Given a damping factor ξ, and with a settling distance Dy for the convergence of the lateral error,
a valid approximation of the control gains can be inferred for some controllers. As such, future
works include training a neural network to predict these values for a given controller, and then test
a different controller without retraining the neural network. Indeed we have seen that gains are
setting the distance of convergence for the control laws. As a result, instead of tuning parameters
of a deterministic control law, we can tune more general parameters that can infer the gains, which
allows for a level of abstraction with respect to the control law, and could permit the tuning of
multiple control laws from a single neural network.

Gain tuning: going further than controllers

One of the aspects that is being worked on is to alter the controller gain prediction system developed
during this PhD, in order to apply it to observer. Indeed, observer are also dependent on their
parameters which are often set a priory and are constant. However, these parameters affect the
behavior of the observer, and in some situations changing these values are needed (i.e. changing
reactivity of the observer when the noise increases). Special care will need to be taken, as the
validation of the observers is considerably harder than validating control laws. Furthermore, it is
not clear if all observer are tunable in real time, without adverse effects. An alternative could be
to use a machine learning method to predict the observed parameters (such as βF or CR), in order
to correct or replace existing observers.

Speed control applied independently to each wheel

For some mobile robots, each wheel is independently controllable by a motor, even if usually
controlled in a symmetric manner for simplicity in control. Instead, this could be achieved using
the neural network based speed control developed here with slight modifications. Indeed, instead

7.3. OVERVIEW OF THE WORK 113

of tuning a single speed, the neural network could output an independent speed for each wheel.
This could in turn allows for complex dynamic behavior, including slippage correction for higher
computed speeds, or even drift control.

Transformer applied to robotic control

The transformer architecture [99] is a method of using attention neural networks, in order to predict
an output from a sequence of elements. In a robotic context, this could be used in order to pull
specific data point from previous timesteps, and use them in order to determine the optimal output.
Furthermore, the attention mechanism is not opaque, and as such can be used as an additional
tool for interpreting the neural networks. However, this would increase the complexity of the
neural network, which would make its predictability and interpretability far more complicated.
Furthermore, the number of parameters of the neural network would increase considerably, which
means an alternative to CMA-ES would need to be considered.

Custom Neural network architecture

Rather than only tune the weights from a fully connect network, one could consider the tuning of
the neural network architecture as well, in order to determine an optimal structure a priory for the
task. This would mimic nature, and allow for the neural network to have a implicitly behavior that
is ”burnt-in” by the underlying structure of the neural network. Indeed, one could consider that
the steering angle be dependent on the opposite value of the angular error, and directly ”hard-
wire” the neurons together in order to encourage this behavior. However, doing this over the whole
network would be complex. Which is why an optimizer could be considered to achieve this, such
as what is done in [100, 101].

Improving the optimizer

One of the issues raised in the conclusion is the CMA-ES optimizer. It is not sample efficient, and
it is sensitive to large neural network due to the curse of dimensionality when randomly sampling
in a large search space. As such, two choices can be considered here: Either augment CMA-ES
in order to reduce these issues, and in turn improve the performance of the obtained results and
being able to increase the size of the neural network. Or fix the triad issues of the time difference
reinforcement learning, as detailed in section 3. Fundamentally, solving this issue would allow for an
increase in the neural network size, to improve the training time, and to improve the performance
of the final neural network.

7.3 Overview of the work

We showed that episodic reinforcement learning methods for policy iteration with neural networks
can be used in order to increase the adaptability of autonomous mobile robots. We demonstrated
that using such techniques to adapt model based control improved their performances, and out-
performed end-to-end approaches. Furthermore, these techniques allowed for adapting the robot
to complex inputs, such as the terrain and the sensor accuracy, in real time.

This opens the way to developing new strategies for increasing the adaptability and versatility
of autonomous robots, by a judicious cooperation between model based controllers and machine
learning based AI systems, rather than using them as opposing approaches.

Bibliography

[1] A. M. Turing, “Computing machinery and intelligence,” in Parsing the turing test. Springer, 2009,
pp. 23–65.

[2] E. B. Braaten and D. Norman, “Intelligence (iq) testing,” Pediatrics in review, vol. 27, no. 11, pp.
403–408, 2006.

[3] W. Weiten, Psychology: Themes and variations. Cengage Learning, 2021.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton et al., “Mastering the game of go without human knowledge,” nature, vol. 550,
no. 7676, pp. 354–359, 2017.

[5] E. Hubinger, C. van Merwijk, V. Mikulik, J. Skalse, and S. Garrabrant, “Risks from
learned optimization in advanced machine learning systems,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.01820

[6] J. Koch, L. Langosco, J. Pfau, J. Le, and L. Sharkey, “Objective robustness in deep reinforcement
learning,” 2021. [Online]. Available: https://arxiv.org/abs/2105.14111

[7] S. J. Russell, Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.

[10] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and
its derivatives using multilayer feedforward networks,” Neural Networks, vol. 3, no. 5, pp. 551 – 560,
1990. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0893608090900056

[11] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The
bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[12] C. Ramos, J. C. Augusto, and D. Shapiro, “Ambient intelligence—the next step for artificial intelli-
gence,” IEEE Intelligent Systems, vol. 23, no. 2, pp. 15–18, 2008.

[13] J. J. Hopfield and D. W. Tank, ““neural” computation of decisions in optimization problems,”
Biological cybernetics, vol. 52, no. 3, pp. 141–152, 1985.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[15] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, “Flexible, high perfor-
mance convolutional neural networks for image classification,” in Twenty-second international joint
conference on artificial intelligence, 2011.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[18] G. Tesauro et al., “Temporal difference learning and td-gammon,” Communications of the ACM,
vol. 38, no. 3, pp. 58–68, 1995.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller,
“Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[20] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plap-
pert, G. Powell, R. Ribas et al., “Solving rubik’s cube with a robot hand,” arXiv preprint
arXiv:1910.07113, 2019.

115

https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2105.14111
http://www.sciencedirect.com/science/article/pii/0893608090900056
http://arxiv.org/abs/1312.5602

116 BIBLIOGRAPHY

[21] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances in neural
information processing systems, vol. 1, 1988.

[22] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann et al., “Stanley: The robot that won the darpa grand challenge,” Journal
of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[23] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer et al., “Autonomous driving in urban environments: Boss and the urban challenge,” Journal
of field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[24] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for
self-driving cars,” 2016. [Online]. Available: https://arxiv.org/abs/1604.07316

[25] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement learning for autonomous
driving,” 2017. [Online]. Available: https://arxiv.org/abs/1704.03952

[26] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous methods for deep reinforcement learning,” CoRR, vol. abs/1602.01783, 2016.
[Online]. Available: http://arxiv.org/abs/1602.01783

[27] Q. Khan, T. Schön, and P. Wenzel, “Latent space reinforcement learning for steering angle
prediction,” 2019. [Online]. Available: https://arxiv.org/abs/1902.03765

[28] J. C. Gerdes, “Neural networks overtake humans in gran turismo racing game,” 2022.

[29] M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-real transfer of accurate grasping with eye-in-hand
observations and continuous control,” 2017. [Online]. Available: https://arxiv.org/abs/1712.03303

[30] S. R. Richter, H. A. AlHaija, and V. Koltun, “Enhancing photorealism enhancement,”
arXiv:2105.04619, 2021.

[31] D. Giglio, “Task scheduling for multiple forklift agvs in distribution warehouses,” in Proceedings of
the 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE, 2014, pp. 1–6.

[32] L. Li, Y.-H. Liu, M. Fang, Z. Zheng, and H. Tang, “Vision-based intelligent forklift automatic guided
vehicle (agv),” in 2015 IEEE International Conference on Automation Science and Engineering
(CASE). IEEE, 2015, pp. 264–265.

[33] A. Michaels, S. Haug, and A. Albert, “Vision-based high-speed manipulation for robotic ultra-
precise weed control,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 5498–5505.

[34] J. Rohde, J. E. Stellet, H. Mielenz, and J. M. Zöllner, “Localization accuracy estimation with appli-
cation to perception design,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 4777–4783.

[35] T. Peynot, J. Underwood, and S. Scheding, “Towards reliable perception for unmanned ground
vehicles in challenging conditions,” in 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2009, pp. 1170–1176.

[36] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid locomotion via
reinforcement learning,” 2022. [Online]. Available: https://arxiv.org/abs/2205.02824

[37] F. B. Amar, C. Grand, G. Besseron, D. Lhomme-Desages, E. Lucet, and P. Bidaud, “Mobility and
stability of robots on rough terrain: modeling and control,” in Proceedings of IROS’08 Workshop on
Modeling, Estimation, Path Planning and Control of All Terrain Mobile Robots, 2008, pp. 5–11.

[38] D. Filliat, “Robotique mobile,” Ph.D. dissertation, EDX, 2011.

[39] G. Campion, G. Bastin, and B. Dandrea-Novel, “Structural properties and classification of kinematic
and dynamic models of wheeled mobile robots,” IEEE transactions on robotics and automation,
vol. 12, no. 1, pp. 47–62, 1996.

[40] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[41] D. Schramm, M. Hiller, and R. Bardini, “Vehicle dynamics,” Modeling and Simulation. Berlin,
Heidelberg, vol. 151, 2014.

[42] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The kinematic bicycle model: A
consistent model for planning feasible trajectories for autonomous vehicles?” in 2017 IEEE intelligent
vehicles symposium (IV). IEEE, 2017, pp. 812–818.

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1704.03952
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1902.03765
https://arxiv.org/abs/1712.03303
https://arxiv.org/abs/2205.02824

BIBLIOGRAPHY 117

[43] L. Li, “Modélisation et contrôle d’un véhicule tout-terrain à deux trains directeurs,” Ph.D.
dissertation, Université Paris sciences et lettres, 2021, thèse de doctorat dirigée par D’andrea-Novel,
Brigitte Informatique temps réel, robotique et automatique Université Paris sciences et lettres 2021.
[Online]. Available: http://www.theses.fr/2021UPSLM032

[44] F. B. Amar, P. Jarrault, P. Bidaud, and C. Grand, “Analysis and optimization of obstacle clearance of
articulated rovers,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 4128–4133.

[45] G. Rill, Road vehicle dynamics: fundamentals and modeling. Crc Press, 2011.

[46] C. C. De Wit and P. Tsiotras, “Dynamic tire friction models for vehicle traction control,” in Pro-
ceedings of the 38th IEEE conference on decision and control (Cat. no. 99CH36304), vol. 4. IEEE,
1999, pp. 3746–3751.

[47] D. Lhomme-Desages, “Commande d’un robot mobile rapide à roues non directionnelles sur sol na-
turel,” Ph.D. dissertation, Université Pierre et Marie Curie-Paris VI, 2008.

[48] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle dynamics studies,” in
SAE Technical Paper. JSTOR, 1987, pp. 190–204.

[49] M. Deremetz, “Contribution à la modélisation et à la commande de robots mobiles autonomes et
adaptables en milieux naturels,” Ph.D. dissertation, Université Clermont Auvergne, 2018, thèse de
doctorat dirigée par Lenain, Roland Robotique Université Clermont Auvergne (2017-2020) 2018.
[Online]. Available: http://www.theses.fr/2018CLFAC079

[50] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “Adaptive and predictive path tracking control
for off-road mobile robots,” European journal of control, vol. 13, no. 4, pp. 419–439, 2007.

[51] R. Lenain, M. Deremetz, J.-B. Braconnier, B. Thuilot, and V. Rousseau, “Robust sideslip angles
observer for accurate off-road path tracking control,” Advanced Robotics, vol. 31, no. 9, pp. 453–467,
2017.

[52] E. Lucet, A. Micaelli, and F.-X. Russotto, “Accurate autonomous navigation strategy dedicated to
the storage of buses in a bus center,” Robotics and Autonomous Systems, vol. 136, p. 103706, 2021.

[53] G. Welch, G. Bishop et al., “An introduction to the kalman filter,” 1995.

[54] W. H. Press, W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, and
W. T. Vetterling, Numerical recipes in Pascal: the art of scientific computing. Cambridge university
press, 1989, vol. 1.

[55] R. Alexander, “Solving ordinary differential equations i: Nonstiff problems (e. hairer, sp norsett, and
g. wanner),” Siam Review, vol. 32, no. 3, p. 485, 1990.

[56] J. R. Dormand, Numerical methods for differential equations: a computational approach. CRC
press, 1996, vol. 3.

[57] D. P. Kingma and M. Welling, “Stochastic gradient vb and the variational auto-encoder,” in Second
International Conference on Learning Representations, ICLR, vol. 19, 2014.

[58] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
2014, pp. 2672–2680.

[59] T. Lesort, N. Dı́az-Rodŕıguez, J.-F. Goudou, and D. Filliat, “State representation learning for control:
An overview,” Neural Networks, vol. 108, pp. 379–392, 2018.

[60] A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Dı́az-Rodŕıguez, and D. Filliat, “Decoupling feature
extraction from policy learning: assessing benefits of state representation learning in goal based
robotics,” arXiv preprint arXiv:1901.08651, 2019.

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[62] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[63] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning, vol. 3,
no. 1, pp. 9–44, 1988.

http://www.theses.fr/2021UPSLM032
http://www.theses.fr/2018CLFAC079
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1509.02971

118 BIBLIOGRAPHY

[64] P. L. Bartlett and W. Maass, “Vapnik-chervonenkis dimension of neural nets,” The handbook of brain
theory and neural networks, pp. 1188–1192, 2003.

[65] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[66] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online].
Available: http://arxiv.org/abs/1801.01290

[67] A. Hill, A. Raffin, M. Ernestus, R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plap-
pert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/hill-a/
stable-baselines, 2018.

[68] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” 2016.

[69] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49, no. 1, pp. 8–30,
1961.

[70] A. Raffin and F. Stulp, “Generalized state-dependent exploration for deep reinforcement learning in
robotics,” arXiv preprint arXiv:2005.05719, 2020.

[71] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a Scalable Alter-
native to Reinforcement Learning,” ArXiv e-prints, 2017.

[72] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural evolution strategies,” in 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelli-
gence). IEEE, 2008, pp. 3381–3387.

[73] A. Auger and N. Hansen, “A restart cma evolution strategy with increasing population size,” in 2005
IEEE congress on evolutionary computation, vol. 2. IEEE, 2005, pp. 1769–1776.

[74] A. S. Fukunaga, “Restart scheduling for genetic algorithms,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1998, pp. 357–366.

[75] H. Mania, A. Guy, and B. Recht, “Simple random search provides a competitive approach to rein-
forcement learning,” 2018.

[76] F. Stulp and O. Sigaud, “Path integral policy improvement with covariance matrix adaptation,”
arXiv preprint arXiv:1206.4621, 2012.

[77] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık, “Comparing results of 31 algorithms from the
black-box optimization benchmarking bbob-2009,” in Proceedings of the 12th Annual Conference
Companion on Genetic and Evolutionary Computation, ser. GECCO ’10. New York, NY, USA:
ACM, 2010, pp. 1689–1696. [Online]. Available: http://doi.acm.org/10.1145/1830761.1830790

[78] N. Hansen, “The CMA evolution strategy: A tutorial,” CoRR, vol. abs/1604.00772, 2016.

[79] R. Ros and N. Hansen, “A simple modification in cma-es achieving linear time and space complexity,”
in International Conference on Parallel Problem Solving from Nature. Springer, 2008, pp. 296–305.

[80] S. K. Kumar, “On weight initialization in deep neural networks,” CoRR, vol. abs/1704.08863, 2017.
[Online]. Available: http://arxiv.org/abs/1704.08863

[81] B. L. Welch, “The generalization of ‘student’s’ problem when several different population varlances
are involved,” Biometrika, vol. 34, no. 1-2, pp. 28–35, 01 1947.

[82] J. G. Ziegler, N. B. Nichols et al., “Optimum settings for automatic controllers,” trans. ASME,
vol. 64, no. 11, 1942.

[83] F. Loucif, S. Kechida, and A. Sebbagh, “Whale optimizer algorithm to tune pid controller for the
trajectory tracking control of robot manipulator,” Journal of the Brazilian Society of Mechanical
Sciences and Engineering, vol. 42, no. 1, pp. 1–11, 2020.

[84] C.-S. Chiu, K.-Y. Lian, and P. Liu, “Fuzzy gain scheduling for parallel parking a car-like robot,”
IEEE Transactions on Control Systems Technology, vol. 13, no. 6, pp. 1084–1092, 2005.

[85] K.-L. Han, O.-K. Choi, J. Kim, H. Kim, and J. S. Lee, “Design and control of mobile robot with
mecanum wheel,” in 2009 ICCAS-SICE. IEEE, 2009, pp. 2932–2937.

[86] S. Khesrani, A. Hassam, M. Boubezoula, and F. Srairi, “Modeling and control of mobile platform
using flatness-fuzzy based approach with gains adjustment,” in 2017 6th International Conference
on Systems and Control (ICSC). IEEE, 2017, pp. 173–177.

http://arxiv.org/abs/1801.01290
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://doi.acm.org/10.1145/1830761.1830790
http://arxiv.org/abs/1704.08863

BIBLIOGRAPHY 119

[87] J.-B. He, Q.-G. Wang, and T.-H. Lee, “Pi/pid controller tuning via lqr approach,” Chemical Engi-
neering Science, vol. 55, no. 13, pp. 2429–2439, 2000.

[88] L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, “Pid, lqr and lqr-pid on a quadcopter
platform,” in 2013 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE,
2013, pp. 1–6.

[89] M. Deremetz, R. Lenain, B. Thuilot, and V. Rousseau, “Adaptive trajectory control of off-road mobile
robots: A multi-model observer approach,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 4407–4413.

[90] F. Altche, P. Polack, and A. de La Fortelle, “High-speed trajectory planning for autonomous ve-
hicles using a simple dynamic model,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). Yokohama: IEEE, Oct. 2017, pp. 1–7.

[91] C. Gámez Serna and Y. Ruichek, “Dynamic Speed Adaptation for Path Tracking Based on Curvature
Information and Speed Limits,” Sensors, vol. 17, no. 6, p. 1383, Jun. 2017, number: 6.

[92] M. Park, S. Lee, and W. Han, “Development of Steering Control System for Autonomous Vehicle
Using Geometry-Based Path Tracking Algorithm,” ETRI Journal, vol. 37, no. 3, pp. 617–625, Jun.
2015, number: 3.

[93] J.-B. Braconnier, R. Lenain, and B. Thuilot, “Ensuring path tracking stability of mobile robots in
harsh conditions: An adaptive and predictive velocity control,” in 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA). Hong Kong, China: IEEE, May 2014, pp. 5268–5273.

[94] J. Braconnier, R. Lenain, B. Thuilot, and V. Rousseau, “High speed path tracking application in
harsh conditions: Predictive speed control to restrict the lateral deviation to some threshold,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 3087–3094.

[95] O. Hach, R. Lenain, B. Thuilot, and P. Martinet, “Avoiding steering actuator saturation in off-
road mobile robot path tracking via predictive velocity control,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. San Francisco, CA: IEEE, Sep. 2011, pp. 4072–4077.

[96] I. Y. Kim and O. L. De Weck, “Adaptive weighted-sum method for bi-objective optimization: Pareto
front generation,” Structural and multidisciplinary optimization, vol. 29, no. 2, pp. 149–158, 2005.

[97] C.-L. Hwang and A. S. M. Masud, Multiple objective decision making—methods and applications: a
state-of-the-art survey. Springer Science & Business Media, 2012, vol. 164.

[98] D. Golovin and Q. Zhang, “Random hypervolume scalarizations for provable multi-objective black
box optimization,” arXiv preprint arXiv:2006.04655, 2020.

[99] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.

[100] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topologies,”
Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002.

[101] C. D. Freeman, L. Metz, and D. Ha, “Learning to predict without looking ahead: World models
without forward prediction,” 2019. [Online]. Available: https://arxiv.org/abs/1910.13038

[102] D. Greenhalgh and S. Marshall, “Convergence criteria for genetic algorithms,” SIAM Journal on
Computing, vol. 30, no. 1, pp. 269–282, 2000.

[103] G. A. Jastrebski and D. V. Arnold, “Improving evolution strategies through active covariance matrix
adaptation,” in 2006 IEEE international conference on evolutionary computation. IEEE, 2006, pp.
2814–2821.

[104] Y. Akimoto, A. Auger, and N. Hansen, “Comparison-based natural gradient optimization in high di-
mension,” in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
2014, pp. 373–380.

[105] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection,” The International Journal of
Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018.

[106] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke,
“Sim-to-real: Learning agile locomotion for quadruped robots,” CoRR, vol. abs/1804.10332, 2018.
[Online]. Available: http://arxiv.org/abs/1804.10332

https://arxiv.org/abs/1910.13038
http://arxiv.org/abs/1804.10332

120 BIBLIOGRAPHY

[107] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, “Sim-to-real transfer with
neural-augmented robot simulation,” in Proceedings of The 2nd Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan, J. Peters, and
J. Morimoto, Eds., vol. 87. PMLR, 29–31 Oct 2018, pp. 817–828. [Online]. Available:
http://proceedings.mlr.press/v87/golemo18a.html

[108] A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” R news, vol. 2, no. 3,
pp. 18–22, 2002.

[109] S. Suthaharan, “Decision tree learning,” in Machine Learning Models and Algorithms for Big Data
Classification. Springer, 2016, pp. 237–269.

[110] C. Molnar, Interpretable machine learning. Lulu. com, 2019.

[111] A. Hill, E. Lucet, and R. Lenain, “A new neural network feature importance method: Application
to mobile robots controllers gain tuning,” in Proceedings of the 17th International Conference on
Informatics in Control, Automation and Robotics, ICINCO 2020. ScitePress, 2020, pp. 188–194.
[Online]. Available: https://doi.org/10.5220/0009888501880194

[112] A. Mordvintsev, C. Olah, and M. Tyka, “Deepdream-a code example for visualizing neural networks,”
Google Research, vol. 2, no. 5, 2015.

[113] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”: Explaining the predictions
of any classifier,” 2016. [Online]. Available: https://arxiv.org/abs/1602.04938

[114] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-critic
methods,” 2018.

[115] F. Gauthier-Clerc, A. Hill, J. Laneurit, R. Lenain, and E. Lucet, “Online velocity fluctuation of
off-road wheeled mobile robots: A reinforcement learning approach,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 2421–2427.

http://proceedings.mlr.press/v87/golemo18a.html
https://doi.org/10.5220/0009888501880194
https://arxiv.org/abs/1602.04938

List of Figures

1.1 XKCD’s spin on Turing tests. 15
1.2 A diagram of a neuron. 16
1.3 Marvin the paranoid robot (”The Hitchhiker’s guide to the galaxy”) 16
1.4 From Artificial Intelligence: A Modern Approach [7]. 17
1.5 The car ALVINN used. 18

2.1 The cinematic robot model. 24
2.2 The dynamic robot model. 25
2.3 The Pacejka model’s lateral force curve, using a Fz = 1.055kN, with respect to the tyre

slip angle. 26
2.4 An example of the model’s delayed steering . 27
2.5 The extended cinematic robot model. 28
2.6 An example of the model’s delayed steering . 31

3.1 An example of a Markov decision process for a ”racing car”. Each state represents an
environmental state and configuration (position, speed, ...), the action influences the
next state, and the reward is the quality of the transition between two states. 38

3.2 A block diagram of a control loop using reinforcement learning. 38
3.3 An example of a policy model. 40
3.4 A hierarchical diagram of some of the types of reinforcement learning methods. 42
3.5 The full training loop with the objective function and optimizer. 44
3.6 The CMA Evolution strategy, each point is a sampled population, the cross is the

mean, the full circle is the covariance, and the dotted circle is the old covariance. Left:
the initial population sampling from the mean and the covariance. Middle: the elitist
selection after the evaluation, updated mean and covariance in the direction of the local
minimum. Right: New covariance and mean for sampling the next generation 45

3.7 A representation of the trajectories used in training. 46
3.8 The neural network architecture used in the following works. 47

4.1 Overview of the proposed method. 49
4.2 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each

controller. On the right: the lateral error of the methods over the curvilinear abscissa. 53
4.3 On the left: The surface error over the curvilinear abscissa. On the right: The objective

function over the curvilinear abscissa. 54
4.4 On the left: The real steering state over the curvilinear abscissa. On the right: The

steering input from the controller over the curvilinear abscissa. 54
4.5 The feature importance for the NN controller method for each input, denoted in %

of importance. 54
4.6 Overview of the proposed method. 56
4.7 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each

controller. On the right: the lateral error of the methods over the curvilinear abscissa. 58
4.8 On the left: The surface error over the curvilinear abscissa. On the right: The objective

function over the curvilinear abscissa. 59
4.9 On the left: The real steering state over the curvilinear abscissa. On the right: The

steering input from the controller over the curvilinear abscissa. 59
4.10 The feature importance for the Delta NN ctrl method for each input, denoted in %

of importance. 59

121

122 LIST OF FIGURES

4.11 Example of sources of influence on the optimal control parameters. Left: wheel, actuator
dynamics. Middle: GPS sensor, perception quality. Right: ground, environment. . . . 60

4.12 Explainability and adaptability compromise in control parameter tuning for controllers. 62

4.13 Overview of the proposed method. 63

4.14 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa. 66

4.15 On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa. 66

4.16 On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa. 66

4.17 On the left: The gains over the curvilinear abscissa. On the right: The horizon over
the curvilinear abscissa. 67

4.18 The feature importance for the NN gain tuner method for each input, denoted in %
of importance. 67

5.1 Overview of the proposed method. 73

5.2 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa. 75

5.3 On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa. 75

5.4 On the left: The real steering state over the curvilinear abscissa. On the right: The
steering input from the controller over the curvilinear abscissa. 76

5.5 On the left: The gains over the curvilinear abscissa. On the right: The horizon over
the curvilinear abscissa. 76

5.6 Overview of the proposed method. 77

5.7 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa. 80

5.8 On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa. 80

5.9 On the left: The gains over the curvilinear abscissa. On the right: The control damping
over the curvilinear abscissa. 81

5.10 The horizon over the curvilinear abscissa. 81

5.11 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa. 82

5.12 On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa. 82

5.13 On the left: The gains over the curvilinear abscissa. On the right: The control damping
over the curvilinear abscissa. 82

5.14 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each
controller. On the right: the lateral error of the methods over the curvilinear abscissa. 83

5.15 On the left: The surface error over the curvilinear abscissa. On the right: The objective
function over the curvilinear abscissa. 83

5.16 On the left: The gains over the curvilinear abscissa. On the right: The control damping
over the curvilinear abscissa. 83

5.17 The feature importance for the Full NN gain tuner method for each input, denoted
in % of importance. 84

5.18 The RobuFAST robotic platform . 86

5.19 The trajectories. Left: trajectory 1. Right: trajectory 2. 87

5.20 The trajectory (on the left) and the lateral error (on the right). Over the total trajectory 87

5.21 The surface error Aerror, and the surface error Aerror after the initial lateral error. . . . 87

5.22 The objective function, and the objective function after the initial lateral error. 87

5.23 The gains, and the horizon. 88

5.24 The trajectory (on the left), and the lateral error (on the right). Over the total trajectory 88

5.25 The surface error Aerror, and the surface error Aerror after the initial lateral error. . . . 88

5.26 The objective function, and the objective function after the initial lateral error. 89

5.27 The gains, and the horizon. 89

LIST OF FIGURES 123

6.1 Two kinds of Pareto fronts: On the left the convex kind. On the right the non-convex
kind. 92

6.2 Two similar Pareto Fronts that are explored using the weighted sum scalarization. On
the left: during training. On the right: Once the optimizer has converged with the
crosses denoting the optimal solution found. 93

6.3 Two similar Pareto Fronts that are explored using the weighted sum scalarization. On
the left: during training. On the right: Once the optimizer has converged with the
crosses denoting the optimal solution found. 93

6.4 Two similar Pareto Fronts that are explored using the weighted hypervolume scalar-
ization. On the left: during training. On the right: Once the optimizer has converged
with the crosses denoting the optimal solution found. 94

6.5 Overview of the proposed method. 96
6.6 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each

controller. On the right: the lateral error of the methods over the curvilinear abscissa. 99
6.7 On the left: The surface corridor error over the curvilinear abscissa. On the right: The

objective function over the curvilinear abscissa. 99
6.8 The speed over the curvilinear abscissa. 100
6.9 On the left: The spline5 trajectory on a x, y scale, with the robot’s path for each

controller. On the right: the lateral error of the methods over the curvilinear abscissa
(GPS loss zone in gray). 100

6.10 On the left: The surface corridor error over the curvilinear abscissa. On the right: The
objective function over the curvilinear abscissa (GPS loss zone in gray). 100

6.11 The speed over the curvilinear abscissa (GPS loss zone in gray). 101
6.12 The feature importance for the NN controller method for each input, denoted in %

of importance. 101
6.13 The feature importance for the Delta NN ctrl method for each input, denoted in %

of importance. 102
6.14 The feature importance for the Model gain tuner method for each input, denoted in

% of importance. 102
6.15 The feature importance for the Full NN gain tuner method for each input, denoted

in % of importance. 103
6.16 Both trajectories on a x,y global reference. On the left, the first trajectory. On the

right, the second trajectory. 105
6.17 The curvature of both trajectories. On the left, the first trajectory. On the right, the

second trajectory. 105
6.18 On the left: The first trajectory on a x, y scale, with the robot’s path for each controller.

On the right: the lateral error of the methods over the curvilinear abscissa. 106
6.19 On the left: The surface corridor error over the curvilinear abscissa. On the right: The

objective function over the curvilinear abscissa. 106
6.20 On the left: The speed over the curvilinear abscissa. On the right: The position

accuracy over the curvilinear abscissa. 107
6.21 On the left: The second trajectory on a x, y scale, with the robot’s path for each

controller. On the right: the lateral error of the methods over the curvilinear abscissa. 107
6.22 On the left: The surface corridor error over the curvilinear abscissa. On the right: The

objective function over the curvilinear abscissa. 107
6.23 On the left: The speed over the curvilinear abscissa. On the right: The position

accuracy over the curvilinear abscissa. 108

7.1 Overview of the proposed method. 112

A.1 The simulated tests results over the surface error (lower is better), of a NN con-
trollermethod (NN used for steering) optimized by each optimization method. 131

A.2 Covariance of each layer for the CMA-ES method. On the left the mean, on the right
the standard deviation. 133

A.3 The minimum objective function found over wall time (left), and over the number of
evaluations (right) . 134

A.4 An example of temporal permutation, where the center input has been permuted in
order to observe the change in the output. 137

124 LIST OF FIGURES

A.5 Plots of the distributions: On the left a distribution plot. On the right a histogram plot 144

A.6 sine and spline0 trajectories, respectively from left to right. 145

A.7 On the left: The Adap2e robot. On the right: The trajectory over the ground. 146

A.8 The reference trajectory on an x,y scale. The trajectory at 1.0m s−1 for the Expert gain
and the Proposed model NN ob1. With a substantial decrease in the settling distance
when comparing the Proposed model with the Expert gain. 146

A.9 In the solid lines, the predicted gain over time for the NN ob1 method. In the dashed
lines, the expert constant gain. In the dash-dotted lines, the errors and curvature over
time. 147

A.10 left: NN ob1 method. right: NN ob2 method. In the solid lines, the predicted gain
over time for the given method. In the dashed lines, the expert constant gain. In the
dash-dotted lines, the errors and curvature over time. 147

A.11 Left: NN ob1 method. Right: NN ob2 method. In the solid lines, the predicted gain
over time for the given method. In the dashed lines, the expert constant gain. In the
dash-dotted lines, the errors, curvature, and the xy covariance (Cxy) over time. 147

A.12 The percent and absolute reduction of Aerror between the method and the expert con-
stant gain, in simulation. 148

A.13 The percent and absolute reduction of Aerror between the NN ob1 method and the expert
constant gain, in experiment. 148

A.14 The percent and absolute reduction of Aerror between the tested method and the expert
constant gain, in experiment with predictive and adaptive controller. 149

A.15 Left: the percent and absolute reduction of Aerror between the tested methods and
the expert constant gain. Right: the percent and absolute reduction of Esteer between
the tested methods and the expert constant gain, in experiment with predictive and
adaptive controller, and GPS loss. 149

A.16 The trajectory, the lateral error, and the filtered lateral error. Over the total trajectory 151

A.17 The surface error Aerror, and the surface error Aerror after the initial lateral error. . . . 152

A.18 The objective function, and the objective function after the initial lateral error. 152

A.19 The gains, and the horizon. 152

A.20 The trajectory, the lateral error, and the filtered lateral error. Over the total trajectory 153

A.21 The surface error Aerror, and the surface error Aerror after the initial lateral error. . . . 153

A.22 The objective function, and the objective function after the initial lateral error. 154

A.23 The filtered gains, and the filtered horizon. 154

A.24 Left: the first trajectory tested. Right: the second trajectory tested. 155

A.25 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 156

A.26 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 156

A.27 Left: the control gains over the curvilinear abscissa. Right: the control horizon over
the curvilinear abscissa. 156

A.28 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 157

A.29 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 157

A.30 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 158

A.31 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 158

A.32 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 159

A.33 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 159

A.34 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 160

A.35 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 160

LIST OF FIGURES 125

A.36 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa. 161

A.37 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 161

A.38 Left: the path from above. Right: the lateral error over the curvilinear abscissa. Below:
the speed over the curvilinear abscissa (limited to 2.0m.s−1). 162

A.39 Left: the surface error. Center: the surface error without the initial error. Right the
objective function. 162

A.40 UML diagrams of the main simulation code. 165
A.41 UML diagrams of the gain tuners. 166
A.42 The simulator tool, without any data. 167
A.43 The simulator tool when valid data is given. 167
A.44 The simulator tool when valid and compare data is given. 168
A.45 The simulator tool for plotting. 168
A.46 The simulator tool with the real time feature importance. 168
A.47 AM (”I Have No Mouth, and I Must Scream”) . 169
A.48 On the left: The estoril5 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 171
A.49 On the left: The estoril7 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 171
A.50 On the left: The estoril910 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 171
A.51 On the left: The line trajectory on a x, y scale. On the right: The curvature associated

to this trajectory. 172
A.52 On the left: The spline5 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 172
A.53 On the left: The estoril6 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 172
A.54 On the left: The estoril12 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 172
A.55 On the left: The estoril1112 trajectory on a x, y scale. On the right: The curvature

associated to this trajectory. 173

Appendix A

Appendices

A.1 TD Reinforcement Learning: Function derivation

Optimization target: Gt

Assuming the sum of the rewards over time describes our optimization target. Then an acceptable
& computable (as the time can tend to T →∞) surrogate target would be the discounted reward
over time denoted Gt, where γ is our discount factor:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

Gt =

∞∑
k=0

γkrt+k+1

Discounting also has some intuitive sense, as it values proximal rewards at a time t:

1000 now > 1000 in 1 year > 1000 in 100 years

Value function: V (s)

In the case of reinforcement learning, ideally we want to maximize the expected return.
The expected return for a given states is encoded as the Value function:

V (s) = E[Gt|s)t = s]

From this, we can derive the following:

V (s) = E[Gt|s)t = s]

V (s) = E

[∞∑
k=0

γkrt+k+1|s)t = s

]

V (s) = E

[
rt+1 + γ

(∞∑
k=0

γkrt+k+2

)
|s)t = s

]

V (s) = E[rt+1 + γGt+1|s)t = s]

V (s) = E[rt+1|s)t = s] + γ E[Gt+1|s)t = s]

V (s) = E[rt+1|s)t = s] + γ E[V (s)t+ 1)|s)t = s]

We get our final bellman equation:

V (s) = E[rt+1 + γV (s)t+ 1)|s)t = s]

127

128 APPENDIX A. APPENDICES

Q-value: Q(s, a)

In reinforcement learning, the concept of a Q-value function is defined as the cumulative sum of
the current reward rt and future reward rt+1, . . . , rT of a given state s)t and action at.

The Q-value function is defined as such:

Q(s, a) = E

[
T−t−1∑
l=0

rt+l+1|s)t = s, at = t

]

Projecting over the optimization target GT , the expected return for a given states and action
is encoded as the Q value:

Q(s, a) = E[Gt|s)t = s, at = a]

For Q(s, a) the proof is similar to V (s), and we get:

Q(s, a) = E[rt+1 + γmax
a′

Q(s)t+ 1, a′)|s)t = s, at = a]

A.2. COMPARING OPTIMIZER ALGORITHMS FOR MOBILE ROBOT STEERING 129

A.2 Comparing optimizer algorithms for mobile robot steering

For training the neural network in an episodic fashion, an optimizer must be used. However,
there is no clear theoretical reason as to which method would allow for the best performing neural
network. As such, an iterative list of incrementally complex optimizers are detailed and tested.

For the CMA-ES method, it is already detailed in section 3.4, as such it is not detailed here to
avoid repetitions.

BSR: Basic Random search

When exploring a search space, an intuitive yet powerful method is stochastic search, which uses
randomized information in order to explore points in a desired location. The explored locations
then return information that can be used to guide the exploration location, in order to guarantee
convergence towards the nearest local minimum if given enough iterations [102].

This idea is leveraged in the following optimization method called: Basic Random Search
(BRS).

Algorithm 1 Basic Random Search Algorithm (from [75])

1: Hyperparameters: step-size α, number of directions sampled per iteration N , standard
deviation of the exploration noise ν

2: Initialize: θ0 = 0, and j = 0.
3: while ending condition not satisfied do
4: Sample δ1, δ2, . . . , δN of the same size as θj , with i.i.d. standard normal entries.
5: Collect 2N rollouts of horizon H and their corresponding rewards using the policies

πj,k,+(x) = πθj+νδk(x) and πj,k,−(x) = πθj−νδk

with k ∈ 1, 2, . . . , N .
6: Make the update step:

θj+1 = θj +
α

N

N∑
k=1

[r(πj , k,+)− r(πj , k,−)] δk

7: j ← j + 1
8: end while

With good starting values for the hyperparameters:

• the initial mean vector: α = 0.1

• the exploration standard deviation vector: σ = [1, . . . , 1]
T

The BRS method consist of taking the current best solution θj , and to add and substract a
random noise vector in order to generate two candidates per random noise vector. These two
candidates then return their respective objective function values, and from those an approximate
direction and amplitude the solution needs to move towards can be inferred. When scaled to
many random noise vector, an accurate direction and amplitude towards the local minimum can
be determined.

This method is able to roughly approximate the local gradient of the exploration space using all
of the sampled points, which is then used to converge toward the local minimum. Unfortunately,
the exploration vector remains constant throughout the optimization process, which means that
when the methods approaches the local minimum it tends to over shoot and struggle to slowly
descend into the optimal point of the local minimum.

CEM: Cross-Entropy Method

A natural improvement over the BRS optimizer, would be to adapt the exploration to the variance
in the sampled population which has the best performance. As such, one could consider a sampling

130 APPENDIX A. APPENDICES

strategy that directly depends on the variance the parameters of the top e candidates obtained.
This is the exact idea behind the following algorithm called: Cross-Entropy Method (CEM).

Algorithm 2 Cross-Entropy Method (from [76])

1: Hyperparameters: elite size e, number of samples per iteration N , mean vector of the initial
distribution µ, standard deviation vector of the initial distribution σ, .

2: Initialize: θ0 = 0, and j = 0.
3: while ending condition not satisfied do
4: Sample δ1, δ2, . . . , δN of the same size as θj , with the normal distribution N(µ, σ2).
5: Collect N rollouts and their corresponding objective functions using the policies

πδk(x)

with k ∈ 1, 2, . . . , N .
6: Sort the samples δ1, δ2, . . . , δN in order from lowest to highest.
7: Update µ from the elite:

µ← 1

e

e∑
k=0

δk

8: Update σ from the elite:

σ ←

√√√√1

e

e∑
k=0

(δk − µ)2

9: j ← j + 1
10: end while

With good starting values for the hyperparameters:

• elite size: e = max(⌈N/5⌉, 1)

• the initial mean vector: µ = [0, . . . , 0]
T

• the initial standard deviation vector: σ = [1, . . . , 1]
T

Every iteration the CEM optimizer attempts to find the normal distribution that fits the top e
candidates it sampled, and as such closes the exploration space as much as possible on the lowest
point around the initial search space.

The advantage of this method, is its capability of quickly converging to the nearest local mini-
mum with very few iterations. However, this means that it tends to not explore potentially better
minimums that are further away from the initial search space (which CMA-ES avoids thanks to its
evolution vectors and slowly decreasing exploration σ). Furthermore, by its design CEM ignores
most of the sampled points, which is unfortunate as even points with high values contain infor-
mation about where not to explore (an issue solved by the adaptive variation of CMA-ES called
aCMA-ES).

An empirical test: Comparing with CMA-ES

With these incremental methods described and compared, an empirical analysis was done where all
three methods where used to optimize a neural network which needed to steer a mobile robot from
the state information in a simulation, with an objective function that minimized the lateral error
and steering error (i.e. the NN controller method and objective function detailed in section 4.1).

The following is a distribution plot of the surface error (lower is better) returned by the neural
network trained by each optimizer:

A.2. COMPARING OPTIMIZER ALGORITHMS FOR MOBILE ROBOT STEERING 131

Figure A.1: The simulated tests results over the surface error (lower is better), of a NN con-
trollermethod (NN used for steering) optimized by each optimization method.

The figure A.1 shows that the CMA-ES method is able to reach two orders of magnitude lower
errors when compared to BRS, and more than one order of magnitude lower errors when compared
to CEM. This implies that the additional elements implicit to CMA-ES, such as using the entire
population when updating, the adaptive search space, and the evolution vectors allows it to obtain
much better results.

This shows that some empirical evidence supports CMA-ES as the most appropriate optimizer,
when compared to CEM and BRS. However, the CMA-ES method has many variations, as such
additional tests with some variations of CMA-ES were also done in section A.3.

A.3. CMA-ES ANALYSIS 133

A.3 CMA-ES analysis

covariance exploration

One of the questions that was asked while using the CMA-ES method was whether or not a
covariance matrix was useful for training neural networks. As a covariance matrix measures the
linear covariance between two variables, and that a neural network uses activation functions to
break linearity between layers, is it useful to calculate the covariance between two layers? To
verify this, a neural network with a hyperbolic tangent as the activation function was trained to
tune gains for a controller in a trajectory following task, and the final covariance matrix is extracted
and visualized.

The parameter space for the used Neural network was of 6023 dimensions. This would be
impractical to display such matrices. Furthermore, it would be visually difficult to observe any
pattern with regard to the first and last layers of the neural networks, as they compose the first
880 dimensions and the last 12 dimensions respectively.

As such, the sub matrices for each weight and bias of each layer have been reduced, using the
mean and standard deviation of the said sub matrices. This should give a rough overview of which
parts of the parameter space, each method was converging towards.

Figure A.2: Covariance of each layer for the CMA-ES method. On the left the mean, on the right
the standard deviation.

The covariance values on figure A.2 (e.g. without the diagonal vector) of each layer for CMA-
ES, seem to indicate a covariance of the output bias with itself, with the output weights, and
with the bias of the second layer; this is expected, as the the output gains are indeed correlated
with regard to the objective function (observed using a constant gain model instead of a neural
network).

This implies that the full covariance matrix is not very important for neural network, as they
break the linearity with their activation functions.

However calculating the covariance matrix might still be of use for the output layer, as they
compute the gain from the state representation in the hidden layers.

An interesting side effect is that using a ReLU activation function (ReLU(x) = max(x, 0))
might not break linearity enough, as ReLU seemed to degrade performance in the target use case.
And this might be the reason why CMA-ES optimized neural networks in the state of the art tend
to use other activation functions, such as hyperbolic tangent or sigmoid. However, further study
is needed properly to confirm this.

CMA-ES variants

Due to its widespread use, many sub variants of the original CMA-ES method have been developed
over time, each with its own advantages, disadvantages, and targeted problem space. This implies
the question: Which variant of CMA-ES is optimal for the gain prediction task of a controller for
a car-like mobile robot?

Most of the CMA-ES variants revolve around how the covariance matrix is calculated. Lets
take as an example the original CMA-ES method with a full covariance matrix:

134 APPENDIX A. APPENDICES

In order to sample from a multivariate Gaussian distribution, the covariance matrix must be
square rooted:

N(µ, σ2C) <=> µ+ σC
1
2N(0, I)

Where µ is the mean, σ the global variance, and C the covariance of the search space. Calculating
the square root of a matrix, is equivalent to finding the matrix A, such as:

A = C
1
2 <=> AA = C

The most common way of doing this, is by spectral decomposition using the eigen vectors and
eigen values. Finding said eigen values and eigen vectors is of O(n3) complexity. As such, the
computation time is proportional to the cube of the number of dimensions in the search space,
and is proportional to the population size of CMA-ES.

This is problematic when the search space is the parameter space of a neural network, as neural
network commonly have 10’000 to 1’000’000 unique parameters that need optimizing. Further
compounding this issue, is the question of the λ of CMA-ES, which determines how many of the
population’s best solutions are used to calculate the covariance matrix. In the original CMA-ES

method, λ =
Npop

2 . However in the adaptive variants, λ = Npop, where the worst of the population
a given a negative weight instead of being ignored, making CMA-ES more efficient with respect to
the number of evaluations.

This means simplifying the covariance matrix to a diagonal matrix, or to a covariance matrix
in a decomposed form would avoid costly calculations when large neural networks are used.

Here are some of the most common CMA-ES variants:

• CMA-ES [78]: uses the average of the better half of the population to compute the full
covariance matrix

• aCMA-ES [103]: adaptive variant of CMA-ES, uses the entire population to compute the
full covariance matrix

• sepCMA-ES [79]: separable CMA-ES, uses the average of the better half of the population
to compute the diagonal of the covariance matrix, where an element wise square root is
equivalent to a matrix square root.

• sepaCMA-ES [79, 103]: adaptive separable CMA-ES, uses the entire population to compute
only the diagonal of the covariance matrix, where an element wise square root is equivalent
to a matrix square root.

• VD-CMA-ES [104]: uses a diagonal matrix and an eigen vector, in order to compute a
covariance matrix, that can be expressed as 2 vectors internally, which allows for faster
computation of square root of the covariance matrix.

Each of the methods were tested in order to verify which one would be ideal for a fast compu-
tation time, while keeping the gain prediction to be as good as possible.

0 20000 40000 60000 80000 100000
Time - T [s]

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

m
in

 O
bj

ec
tiv

e
fu

nc
tio

n
- o

bj
1

[m
] sepacmaes

vdcmaes
acmaes
cmaes
sepcmaes

0 2500 5000 7500 10000 12500 15000 17500 20000
number of evaluations - Neval []

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

m
in

 O
bj

ec
tiv

e
fu

nc
tio

n
- o

bj
1

[m
] sepacmaes

vdcmaes
acmaes
cmaes
sepcmaes

Figure A.3: The minimum objective function found over wall time (left), and over the number of
evaluations (right)

Figure A.3 shows that over the number of evaluations, each method seems similar in perfor-
mance. However over the all time, sepCMA-ES, sepaCMA-ES, and VD-CMA-ES have the clear

A.3. CMA-ES ANALYSIS 135

advantage, as they are at worst three times faster that CMA-ES and six times faster than aCMA-
ES.

Nevertheless, observing training curves are not sufficient to determining the quality of the
trained policy, as two similar objective function values, may have drastically different behavior.
As such, 100 runs of each trained policy were run, and 4 metrics were used in order to asses the
quality of the gain prediction of each policy generated by the CMA-ES methods.

ob1 =
1

T

N∑
n=0

[
|y(tn)|+L|θ̃(tn)|+ksteerL|δF (tn)|

]
∆t [m] (A.1)

Aerror =

N∑
n=0

∣∣∣∣∣v(tn) cos(θ̃(tn))
(
y(tn) +

v(tn) sin(θ̃(tn))∆t

2

)∣∣∣∣∣ ∆t [m2] (A.2)

Where Aerror is the surface of the tracking error, and ob1 is chosen (instead of ob2) for its lower
number of parameters to tune. The notation follows the one used in the figure 2.1 in section 2.3.

When comparing over the expert method (kp = 0.1225, kd = 0.7) the percentage difference in
performance can be observed in the table A.1.

Method ob1 (m s) Aerror (m
2)

∫ T
θ̃tdt (rad s)

∫ T
ytdt (m s)

Speed (m s−1) 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
CMA-ES 14% 11% 5% 41% 33% 21% −13% −4% −5% 33% 26% 20%
aCMA-ES 13% 10% 5% 40% 29% 11% −15% −2% 6% 32% 23% 11%
VD-CMA-ES 13% 9% 5% 41% 32% 17% −12% −10% −4% 33% 26% 8%
sepaCMA-ES 13% 9% 5% 42% 32% 16% −18% −11% −2% 33% 26% 15%
sepCMA-ES 11% 7% 4% 32% 21% 8% −11% .3% 6% 25% 17% 9%

Table A.1: The percent improvement over the expert method, for each metric, each speed, over
each method.

This inter method similarity is even more emphasized when observing the percent improvement
of each method over the expert method in the table A.1, as they do not seem to have any strong
statistical outlier. Which implies that all of the tested CMA-ES methods would be comparable in
terms of gain prediction quality, with the exception of sepCMA-ES.

This implies that the full covariance matrix is not needed to train the gain tuning method, as
such if computation time becomes a large enough obstacle, then the use of sepaCMA-ES or VD-
CMA-ES can be considered, as they have comparable performance to CMA-ES. However more
research is needed, as it seems that part the covariance matrix is used to improve the training
performance.

CMA-ES limitations for real world experimentation

When comparing with time difference reinforcement learning, it becomes clear that the CMA-ES
reinforcement learning is far less sample efficient that the time difference reinforcement learning
algorithms [71]. This means that the CMA-ES method will need far more simulated time in order
to converge to a decent local optimum. In this use case, the time for the CMA-ES method is about
a year of simulated time. This means that without a large number of robot in parallel [105], it
would be unfeasible to train in real world condition.

As such, realistic enough simulation is needed, with possibly some transfer learning methods
such as [106, 107] in order to overcome the systematic error between reality and the simulator.

A.4. NEW FEATURE IMPORTANCE METHOD 137

A.4 New feature importance method

Feature importance

In order to explain the main variable influencing the decision of the algorithm, one can derive the
feature importance. It analyses how important each input feature is in order to obtain a good
prediction.

This is usually used in the context of decision trees [108], where each node on the tree has a
score determining the quality of its split. Which in some cases is the Gini impurity [109]. The
feature importance is described as the input parameters that lead to a low Gini impurity for each
node that use the input feature for its split. When sorted, these feature importance show which
inputs where the most useful in order to obtain a good prediction.

Unfortunately, decision trees struggle to outmatch the performance of neural networks, due to
neural networks strengths as dimensional reducers and being universal function approximators for
non-linear functions [9]. This means that in most cases neural networks must be used in order to
obtain the desired performance.

The notion of feature importance is still available to neural networks, however they are not as
clear as for the decision trees. The most known method is the Temporal Permutation method,
described in [110], and detailed in the following section.

Temporal permutation

In [111], we described a method for determining the importance each input has with respect to
the output. That is to say, how useful each input is for the neural network in order to predict the
desired output. For this, the method of temporal permutation is used, which consist of shuffling
each input over time, in order to break the coherence of that specific input, while preserving it’s
statistical distribution. When applying temporal permutation to the desired input, the observed
change in the output describes the impact that input has on the prediction.

vt=5, vt=4, vt=3, vt=2, vt=1, vt=0

xt=2, xt=0, xt=5, xt=1, xt=3, xt=4

yt=5, yt=4, yt=3, yt=2, yt=1, yt=0

Figure A.4: An example of temporal permutation, where the center input has been permuted in
order to observe the change in the output.

Figure A.4 shows a temporal permutation approach, where each input is shuffled over time in
order to observe how the neural network reacts to the given input being shuffled. If the change in
the neural network is strong, then that input is important to the prediction.

For a trained neural network, if the assumption that the neural network predicts a quasi-optimal
output is given. Then the change between the original predicted output, and the predicted output
when the input was altered, should give the influence each input has on the output. And this is
turn gives describes how important each input is to predicting the quasi-optimal output.

However, this approach is not without its drawbacks, as it is dependent on any bias in the
dataset used for the analysis (for instance if an input’s range is not fully explored, then it might
miscalculate the feature importance). Furthermore, this information is hard to exploit, as it return
the expected change in the output, and not a rate of change for example.

Novel gradient base approach

As such, a novel method has been developed, consisting of exploiting the gradient of the neural
network in order to determine the impact each input has for each output. This is similar to the
approach used in the Deep dream paper [112] and with a more general approach for neural networks

138 APPENDIX A. APPENDICES

than [113], as we are calculating the gradient of the output of the neural network, with respect to
it’s input.

Feed forward multilayer perceptron neural networks, consist of a sequence of matrix multipli-
cations, adds, and activation functions, from the given input to the given output [9]:

y = a(b(n) + w(n,n−1)a(...b(1) + w(1,0)X)) (A.3)

Where y is the output vector, X is the input vector, a is the activation function, b(n) is the
bias vector at the layer n, and w(n,n−1) is the weight matrix between the layer n and the layer
n − 1. The following shorthands are used in order to simplify the notation: s(n) = a(z(n)) and
z(n) = s(n−1)w(n,n−1) + b(n), where s(n) is the output vector of the activation function at the layer
n, and z(n) is the vector before passing through the activation function.

From this, the gradient between the output, and any component of the neural network can be
achieved using the chain rule. Indeed this is the exact method that is used in back-propagation [9]
for gradient descent in supervised learning methods applied to neural networks.

∂y

∂X
=

∂y

∂a

∂a

∂z(n)
∂z(n)

∂s(n−1)
. . .

∂s(1)

∂a

∂a

∂z(1)
∂z(1)

∂X
(A.4)

Knowing ∂y
∂a = ∂s(n)

∂a = 1, ∂a
∂z(n) = a′(z(n)), ∂z(n)

∂s(n−1) = w(n,n−1), and ∂z(1)

∂X = w(1,0). The
following simplification is obtained using Eq. (A.4):

∂y

∂X
= a′(z(n))w(n,n−1) . . . a′(z(1))w(1,0) (A.5)

Using the equation, we can derive the jacobian matrix between each output component and
each input component. From this the expected rate of change of the output with respect to each
input can be derived, and using the same assumption as the previous method, that the neural
network predicts a quasi-optimal output, we can describe any change as being important to the
predicted output.

Using this method we can observe the rate of change of each input with respect to each output,
this implies a linearization of a given input and output set can be easily determined once the rate
of change has been computed.

Deriving linear approximations

Using this mean rate of change, a linear approximation of the neural network can be inferred, and
furthermore it can be derived for only a select number of inputs. This means it is possible to create
a linear approximation of the previous results that depend only on the speed of the robot, using a
first order Taylor approximation, derived as:

y ≈ NN(X̄) +
∂NN

∂X
(X̄)(X − X̄) (A.6)

Where X̄ denotes the mean input of the dataset used in the generation of the mean rate of change.

Deriving N-order Taylor approximations

It was discovered that this approximation method was not limited to linear approximations, but
could be used to generate any N-order multi-variable Taylor approximation.

NN(x1, x2, ..., xd) = NN(a1, a2, ..., ad) +
∑d

j=1
∂NN(a1,a2,...,ad)

∂xj
(xj − aj)

+ 1
2!

∑d
j=1

∑d
k=1

∂2NN(a1,a2,...,ad)
∂xj∂xk

(xj − aj)(xk − aj)

+ 1
3!

∑d
j=1

∑d
k=1

∑d
l=1

∂3NN(a1,a2,...,ad)
∂xj∂xk∂xl

(xj − aj)(xk − ak)(xl − al) + ...

(A.7)

This could in turn allow for approximate, but interpretable and predictable behavior of a neural
network, allowing for proofs of stability, or simplifications for faster calculations. However, it should

be noted that an N-order approximation requires up to
∑N

k=0 d
k = dN−1

d−1 unique multiplications

A.4. NEW FEATURE IMPORTANCE METHOD 139

(if the partial derivatives are precomputed), which can be considerably higher than computing the
neural network. For example with d = 20 inputs, an 4th order approximation requires up to 8421
unique multiplications.

However, this method suffers from the choice of activation function. Indeed for a valid Taylor
approximation, the neural network must be infinitely differentiable, this only occurs if the activation
function is infinitely differentiable. This means that activation functions such as ReLU cannot be
used with this method.

Furthermore in order to get the ideal performance, a well behaved function must be used. A well
behaved function is one where higher order derivatives have a lower impact on the approximation,
as in their Nth gradient factor does not grow as fast as the factorial of N. As such, if a ill behaved
activation function is used, then the higher order derivatives of the activation function will cause
a degradation on the generalization outside of the approximation point.

Examples of ill behaved functions include but are not limited to: gaussian, tanh, LiSHT, Bent
identity, & ArcTan.

Example of well behaved functions include but are not limited to: sigmoid, sigmoid linear unit
(SiLU), softplus, gaussian error linear unit, sin, & sinc.

Gradient base feature importance of experimental results

Using this method, an analysis of the previous results can be done, and from this analysis a better
understanding of the importance of the inputs can be ascertained. By dividing each mean rate of
change by the expected value and normalizing the results, a graph with percentage of contribution
each input has can be derived. This allows for problem and robot specific insights to be ascertained
after training of the neural network, with allows for a better understanding of the neural network’s
behavior in any given situation.

A.5. NN CONTROLLER AND DELTA NN CTRL WITH DYNAMIC PARAMETERS141

A.5 NN controller and Delta NN ctrl with dynamic parameters

Due to the poor initial results of NN controller and Delta NN ctrl in section 4.1, one could
consider excluding them from the section 5. However, due to the additional inputs suggested by
section 5, tests must be done to validate that the performance of NN controller and Delta NN
ctrl are still below the NN gain tuner method with the additional inputs. For this, the following
tables show the simulate results over the testing trajectories and speeds of a Full NN controller
method and Full Delta NN ctrl method, where the inputs are identical to the Full NN gain
tuner method:

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 1.44 (±0.33) 2.08 (±0.64) 29.85 (±0.90) 3.93 (±1.01) 1.09 (±0.04)
Model gain tuner 1.14 (±0.22) 1.29 (±0.54) 25.94 (±1.17) 2.67 (±1.15) 1.09 (±0.03)
Full NN controller 2.20 (±0.38) 2.57 (±0.63) 21.85 (±1.17) 4.14 (±1.57) 2.16 (±0.35)
Full Delta NN ctrl 1.24 (±0.19) 1.29 (±0.47) 24.93 (±1.15) 2.17 (±1.00) 1.15 (±0.05)
Full NN gain tuner 1.17 (±0.21) 1.28 (±0.51) 21.02 (±1.52) 1.97 (±0.89) 1.17 (±0.03)

NN gain tuner 1.26 (±0.23) 1.60 (±0.57) 19.82 (±1.92) 2.30 (±1.19) 1.17 (±0.03)

2m.s−1

Romea 2.04 (±0.63) 3.65 (±1.00) 34.79 (±1.79) 6.67 (±1.16) 1.13 (±0.06)
Model gain tuner 1.69 (±0.72) 2.67 (±1.29) 31.63 (±2.74) 4.98 (±1.68) 1.16 (±0.06)
Full NN controller 2.85 (±0.46) 3.58 (±0.95) 18.49 (±1.36) 5.46 (±1.36) 2.00 (±0.22)
Full Delta NN ctrl 2.49 (±0.38) 3.54 (±0.61) 19.12 (±1.89) 5.10 (±1.06) 1.52 (±0.20)
Full NN gain tuner 1.67 (±0.41) 2.19 (±0.94) 17.68 (±2.09) 3.62 (±1.23) 1.36 (±0.07)

NN gain tuner 1.67 (±0.39) 2.38 (±0.97) 17.45 (±1.79) 3.66 (±1.47) 1.35 (±0.08)

3m.s−1

Romea 4.23 (±1.22) 8.20 (±1.59) 56.66 (±5.16) 12.94 (±1.89) 1.22 (±0.12)
Model gain tuner 2.83 (±1.82) 4.75 (±3.08) 44.25 (±9.10) 7.98 (±3.44) 1.33 (±0.12)
Full NN controller 3.87 (±0.62) 4.91 (±0.87) 20.93 (±2.02) 7.13 (±1.66) 2.77 (±0.32)
Full Delta NN ctrl 3.39 (±0.60) 5.02 (±0.89) 19.86 (±2.48) 7.84 (±1.46) 1.64 (±0.20)
Full NN gain tuner 2.20 (±0.81) 3.28 (±1.55) 19.06 (±3.46) 5.88 (±2.17) 1.42 (±0.10)

NN gain tuner 2.41 (±0.69) 3.50 (±1.34) 20.55 (±4.16) 7.24 (±2.85) 1.50 (±0.14)

4m.s−1

Romea 5.48 (±1.57) 10.37 (±2.36) 60.78 (±9.40) 15.72 (±3.82) 1.26 (±0.15)
Model gain tuner 4.94 (±3.88) 8.00 (±5.57) 70.99 (±24.00) 14.05 (±6.57) 1.61 (±0.25)
Full NN controller 6.75 (±1.36) 8.09 (±1.52) 33.52 (±6.78) 11.73 (±5.31) 5.40 (±0.97)
Full Delta NN ctrl 4.81 (±1.24) 6.47 (±1.21) 29.15 (±3.80) 9.89 (±2.35) 2.60 (±0.49)
Full NN gain tuner 3.64 (±2.37) 5.19 (±2.68) 28.61 (±20.18) 9.33 (±4.46) 1.70 (±0.17)

NN gain tuner 4.03 (±2.22) 5.52 (±2.04) 28.02 (±6.38) 12.66 (±6.88) 1.81 (±0.24)

Table A.2: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 0m

Figure A.2 shows the performance of FullNN controller and FullDelta NN ctrl , which seem
overall to have lower performance when compared to NN gain tuner , with Full NN controller
having the lowest of the three methods. Furthermore, it seems that adding the additional inputs
has not improved the Delta NN ctrl method and has in fact degraded the performance of NN
controller (as can be compared with table 4.7 in section 4.3).

When comparing Full NN controller and Full Delta NN ctrl with Full NN gain tuner
the results is clear, as Full NN gain tuner is able to outperform Full NN controller and Full
Delta NN ctrl in every trajectory and at every speed tested.

Figure A.3 shows similar results as the previous table, where overall Full NN gain tuner
outperforms Full Delta NN ctrl and Full NN controller , with a slight performance gap over
spline5 at 4m.s−1 for the Full Delta NN ctrl method.

Overall, it seems that adding the additional inputs to the Delta NN ctrl has only slightly
change the performance, but remains below Full NN gain tuner , and the performance of Full
NN controller has dropped with respect to NN controller . This shows that the exclusion of
these methods in the section 5 are indeed valid.

142 APPENDIX A. APPENDICES

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Romea 4.70 (±0.33) 5.33 (±0.63) 33.12 (±0.91) 7.15 (±1.01) 4.35 (±0.08)
Model gain tuner 2.92 (±0.26) 3.11 (±0.53) 27.76 (±1.20) 4.38 (±1.17) 2.89 (±0.12)
Full NN controller 4.77 (±0.35) 5.14 (±0.63) 24.45 (±1.15) 6.67 (±1.57) 4.74 (±0.30)
Full Delta NN ctrl 3.07 (±0.22) 3.14 (±0.47) 26.74 (±1.11) 3.96 (±1.02) 2.98 (±0.12)
Full NN gain tuner 2.98 (±0.22) 3.09 (±0.51) 22.86 (±1.54) 3.80 (±0.86) 2.97 (±0.09)

NN gain tuner 3.08 (±0.24) 3.44 (±0.56) 21.64 (±1.93) 4.20 (±1.14) 3.00 (±0.08)

2m.s−1

Romea 6.50 (±0.61) 8.06 (±0.99) 39.17 (±1.79) 10.82 (±1.16) 5.52 (±0.10)
Model gain tuner 3.53 (±0.72) 4.46 (±1.30) 33.44 (±2.83) 6.68 (±1.69) 2.99 (±0.22)
Full NN controller 5.16 (±0.44) 5.87 (±0.96) 20.80 (±1.37) 7.78 (±1.38) 4.36 (±0.21)
Full Delta NN ctrl 4.41 (±0.38) 5.45 (±0.58) 21.00 (±1.85) 6.92 (±1.06) 3.40 (±0.20)
Full NN gain tuner 3.38 (±0.41) 3.88 (±0.94) 19.42 (±2.08) 5.18 (±1.34) 3.11 (±0.14)

NN gain tuner 3.36 (±0.40) 4.07 (±0.98) 19.11 (±1.82) 5.44 (±1.64) 3.09 (±0.15)

3m.s−1

Romea 12.31 (±1.22) 16.09 (±1.58) 64.85 (±5.14) 19.94 (±1.95) 9.21 (±0.15)
Model gain tuner 4.82 (±1.83) 6.78 (±3.05) 46.26 (±9.07) 9.94 (±3.36) 3.32 (±0.44)
Full NN controller 6.22 (±0.57) 7.19 (±0.88) 23.30 (±2.03) 9.56 (±1.59) 5.12 (±0.30)
Full Delta NN ctrl 5.35 (±0.61) 7.09 (±0.87) 21.87 (±2.46) 9.82 (±1.48) 3.62 (±0.26)
Full NN gain tuner 3.97 (±0.81) 5.01 (±1.54) 20.81 (±3.44) 7.99 (±2.32) 3.27 (±0.23)

NN gain tuner 4.08 (±0.76) 5.18 (±1.40) 22.41 (±4.27) 9.20 (±2.93) 3.26 (±0.28)

4m.s−1

Romea 13.44 (±1.59) 18.13 (±2.37) 68.75 (±9.39) 22.68 (±3.91) 9.13 (±0.17)
Model gain tuner 6.96 (±3.94) 10.02 (±5.53) 73.06 (±24.10) 16.13 (±6.57) 3.66 (±0.72)
Full NN controller 9.12 (±1.31) 10.51 (±2.00) 35.97 (±6.98) 13.99 (±5.23) 7.83 (±1.01)
Full Delta NN ctrl 6.76 (±1.25) 8.44 (±1.17) 31.14 (±3.74) 11.79 (±2.18) 4.62 (±0.54)
Full NN gain tuner 5.41 (±2.41) 6.93 (±2.52) 30.09 (±12.95) 12.02 (±18.20) 3.59 (±0.30)

NN gain tuner 5.65 (±2.17) 7.25 (±2.10) 29.44 (±6.45) 14.26 (±6.65) 3.61 (±0.43)

Table A.3: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m

A.6. TRAINING METHOD VARIANCE TEST: FULL NN GAIN TUNER CASE STUDY143

A.6 Training method variance test: Full NN gain tuner case study

In order to justify the methods used, a variance test was performed on the Full NN gain tuner ,
in order to validate that the model obtained was close to the statistical mean, and is not an outlier.
Furthermore, this test is done to show the variability of the training method that is used, with
respect to the performance obtained.

Full NN gain tuner run 1 run 2 run 3 run 4 run 5

mean 7.63144 7.78528 7.52629 7.39438 7.6859
standard deviation 7.97336 7.58792 6.65082 6.44512 6.96599

Table A.4: The overall Surface error in [m2] of each run of Full NN gain tunerat all the speeds
and trajectories used during training, with an initial error of 1m.

Table A.4 shows the mean and standard deviation of the surface error for each run overall.
These results imply an overall mean of 7.60466 and a standard deviation of 0.134388 (with a 5.02%
between min and max values), which means a standard deviation of 1.77% can be expected in
practice, and as such any differences between results that are below 3, 54% (2σ) can be seen as
variance of the training method.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100

y
po

si
tio

n
- y

_p
os

 [m
]

estoril5 estoril7 estoril910 spline5 line

1m.s−1

Full NN gain tuner 2.98 (±0.21) 3.12 (±0.54) 22.76 (±1.32) 3.87 (±0.84) 2.98 (±0.10)
Full NN gain tuner (2) 3.03 (±0.23) 3.32 (±0.48) 21.98 (±1.69) 3.86 (±0.96) 3.00 (±0.14)
Full NN gain tuner (3) 2.97 (±0.25) 3.21 (±0.61) 21.66 (±1.50) 3.75 (±0.89) 2.97 (±0.14)
Full NN gain tuner (4) 2.93 (±0.22) 3.05 (±0.55) 23.33 (±1.20) 3.68 (±0.88) 2.96 (±0.11)
Full NN gain tuner (5) 2.94 (±0.22) 3.06 (±0.48) 24.85 (±1.00) 3.79 (±0.75) 2.99 (±0.10)

2m.s−1

Full NN gain tuner 3.38 (±0.39) 3.78 (±0.91) 19.33 (±1.99) 5.32 (±1.61) 3.10 (±0.12)
Full NN gain tuner (2) 3.61 (±0.40) 4.01 (±0.69) 18.96 (±2.28) 5.40 (±2.97) 3.12 (±0.12)
Full NN gain tuner (3) 3.53 (±0.46) 4.17 (±0.93) 20.16 (±1.79) 6.26 (±3.94) 3.15 (±0.12)
Full NN gain tuner (4) 3.42 (±0.47) 3.94 (±0.88) 19.47 (±1.87) 5.90 (±3.12) 3.07 (±0.12)
Full NN gain tuner (5) 3.34 (±0.49) 3.76 (±0.87) 22.20 (±2.51) 5.63 (±3.07) 3.19 (±0.21)

3m.s−1

Full NN gain tuner 3.97 (±0.85) 4.89 (±1.49) 20.68 (±3.71) 8.11 (±2.23) 3.26 (±0.19)
Full NN gain tuner (2) 4.30 (±0.73) 5.00 (±1.12) 21.14 (±3.35) 7.60 (±3.48) 3.22 (±0.19)
Full NN gain tuner (3) 4.22 (±0.97) 5.40 (±1.30) 21.89 (±3.39) 8.12 (±3.00) 3.34 (±0.23)
Full NN gain tuner (4) 4.39 (±0.87) 5.18 (±1.38) 21.13 (±3.36) 8.33 (±4.66) 3.27 (±0.21)
Full NN gain tuner (5) 4.40 (±1.05) 5.31 (±1.25) 22.49 (±3.95) 8.54 (±3.23) 3.52 (±0.44)

4m.s−1

Full NN gain tuner 5.33 (±2.41) 6.62 (±2.44) 28.95 (±7.88) 11.72 (±4.88) 3.59 (±0.30)
Full NN gain tuner (2) 5.78 (±2.18) 6.65 (±2.02) 30.16 (±12.71) 13.10 (±7.88) 3.58 (±0.28)
Full NN gain tuner (3) 5.55 (±2.07) 7.12 (±2.37) 29.35 (±10.53) 12.35 (±8.04) 3.85 (±0.47)
Full NN gain tuner (4) 5.86 (±1.53) 7.04 (±2.56) 28.16 (±7.08) 11.69 (±5.17) 3.65 (±0.43)
Full NN gain tuner (5) 6.02 (±2.09) 7.07 (±2.44) 28.42 (±5.19) 12.33 (±6.04) 4.14 (±0.84)

Table A.5: Surface error in [m2] of each method at all the speeds and trajectories used during
training, with an initial error of 1m.

When comparing the runs over the trajectories and speeds on table A.5, it seems that the
variances might be subtle changes in the control policy, as some runs perform better than other in
some cases. But overall no clear better method can be distinguished.

Figure A.5 shows the distribution and histogram of the each run over the results obtained in
simulation. It shows that they all have similar distribution profiles with very little skew, and with a
consistent histogram (with the exception of the 5th run). This shows that the runs overall generate
very similar results.

Overall, the results have shown that the variance of the training methods is quite small, and
the results obtained can be very similar, with an overall variation of 1.77%.

144 APPENDIX A. APPENDICES

Figure A.5: Plots of the distributions: On the left a distribution plot. On the right a histogram
plot

A.7. GAIN SYNTHESIS USING CMA-ES IN DYNAMIC SIMULATION 145

A.7 Gain synthesis using CMA-ES in dynamic simulation

In this Annex we detail further some of the first simulated and experimental results obtained during
the PhD for gain adaptation using CMA-ES.

Gain synthesis method being validated in a kinematic simulator, it now needs to be tried in real
world testing. For this, a dynamic model of the mobile robot is used for the training in simulation,
with actuator delays and sliding dynamics, as it more closely models reality. However, this means
that the method must be tuned for a very specific robot and environment.

Experimental setup

Training configuration

The CMA-ES method is run with an initial standard deviation of σ = 0.04, an initial average of
µ = 0, a population size of 32 (from [78], Npop = 4 + ⌊3 log(N)⌋, with N = 6000, Npop = 30,
rounded up to 32 for CPU core counts), and a maximum of 20000 evaluations before termination.

It uses the simulator detailed in section 2.8, based on the dynamical model detailed in sec-
tion (2.3), fed with Pacejka contact forces (2.3). If this permits to investigate the influence of
sliding, the Pacejka model has first been set as constant to be representative of the motion on a
gravel road (intermediate grip conditions).

The neural network is of approximately 6000 parameters, activation function is hyperbolic
tangent, with hidden layers of 40, 100, and 10 neurons respectively. The neural network takes as
inputs the lateral error, angular error, GPS position covariance, current curvature, future curvature
(10 samples over 1s), and the derivative of the lateral and angular error. The output is 2 gains:
kp and kd.

0 20 40 60 80 100
x[m]

15

10

5

0

5

10

15

y[
m

]

0 20 40 60 80 100 120
x[m]

10

0

10

20

y[
m

]

Figure A.6: sine and spline0 trajectories, respectively from left to right.

The evaluation for neural network weights was done over the 2 trajectories shown in the figure
A.6, and over the speeds of 1.0m s−1, 1.5m s−1 and 2.0m s−1, 5 times each to reduce the variance
in the evaluation and to verify the stability of the controller with the dynamic gain. At a random
location on each trajectory, a simulated loss of GPS signal is done, where the accuracy of the
position sensor goes from 0.01m, to 1.0m.

The control law used is Romea for training and evaluation, and the Romea predictive one for
evaluation, With an Extended Kalman Filter (EKF) for the state estimation, and a Lyapunov
sliding observer.

Two models were trained for these experiments. The first one is called NN ob1. It is trained
using the objective function ob1 with a ksteer = 0.5. The second one is called NN ob2. It is trained
using the objective function ob2 with a λ = 6.0. Several values of λ were tested in simulation
(λ = 1, λ = 6, and λ = 12), in order to select the best one that would dampen oscillations, while
correcting the errors.

Experimentation in simulation

The trained neural network is then validated in simulation and compared to a gain model tuned
by an expert, where the gain is set to kp = 0.7, and kd = 0.1225. Each validation is done over the
two trajectories shown in the figure A.6, and over the speeds 1.0m s−1, 1.5m s−1, and 2.0m s−1.

Experimentation with the Adap2e platform

After the validation of the simulated results, the gain prediction methods is tested with a robot in
real world conditions, at a speed of 1.0m s−1, 1.5m s−1, and 2.0m s−1.

146 APPENDIX A. APPENDICES

Figure A.7: On the left: The Adap2e robot. On the right: The trajectory over the ground.

The robot used is the Adap2e platform (figure A.7). This platform has a wheel base length of
1.38m, a wheel track length of 1.0m, a mass of 400kg, a steering actuation delay of about 0.4s, a
GPS position update rate of 10hz, control loop update rate of 10hz, and a settling time for the
steering angle in 0.5s.

Figure A.8: The reference trajectory on an x,y scale. The trajectory at 1.0m s−1 for the Expert
gain and the Proposed model NN ob1. With a substantial decrease in the settling distance when
comparing the Proposed model with the Expert gain.

The trajectory is segmented into three parts shown on the figure A.8:

• Init : The start of the trajectory, the robot is launched from approximately 1m from the side
of the trajectory as an initial error.

• Corner : The large corner of the trajectory, with a constant curvature of 0.2m−1.

• Straight : The final straight line after the large corner, in order to observe the stabilization
from the corner.

Null hypothesis

In this experiment, the following null hypothesis must be refuted:

• Adjusting the gain in real time, will yield similar or worse performance to using a constant
gain.

Should the null hypothesis be refuted, then it would mean adjusting the gain in real time, would
allow for better performance than using a constant gain, as it is able to adapt in real time to
the perceived changes in the environmental state, while being robust to the sliding dynamics and
actuation delay.

Results

Qualitative results

Here in the qualitative results, the interpretation of the gain from the proposed method will be
done, in order to see the adaptation of each objective function, relative to the observation.

A.7. GAIN SYNTHESIS USING CMA-ES IN DYNAMIC SIMULATION 147

Figure A.9: In the solid lines, the predicted gain over time for the NN ob1 method. In the dashed
lines, the expert constant gain. In the dash-dotted lines, the errors and curvature over time.

The first test is run with the Romea classic controller without sliding accounted. The gain
output with the NN ob1 gain prediction model, at 1.0m s−1 can be seen on the figure A.9. A large
spike at the Init section, shows that the method is correcting for the large initial error quickly
without overshooting. Then, a small increase in the gain occurs at the Corner section in order to
follow the curvature. One can also see the effect of neglecting sideslip angles, since the robot does
not perfectly match the reference path (see the lateral error in figure A.9).

Figure A.10: left: NN ob1 method. right: NN ob2 method. In the solid lines, the predicted gain
over time for the given method. In the dashed lines, the expert constant gain. In the dash-dotted
lines, the errors and curvature over time.

The next test is run with the Romea predictive controller with sliding accounted. The gain
output at 1.0m s−1 can be seen on the figure A.10. A large spike at the Init section, shows that the
method is correcting for the large initial error quickly without overshooting for NN ob1. Then, a
small increase in the gain at the Corner section for NN ob1, and a large increase for NN ob2, occur
in order to follow the curvature. Taking into account sliding makes it possible to better follow the
reference path.

Figure A.11: Left: NN ob1 method. Right: NN ob2 method. In the solid lines, the predicted gain
over time for the given method. In the dashed lines, the expert constant gain. In the dash-dotted
lines, the errors, curvature, and the xy covariance (Cxy) over time.

The final test is run with the Romea predictive controller, with a GPS signal loss after 30m.
The gain output at 1.0m s−1 can be seen on the figure A.11. Identical behavior to the previous
experiment can be observed for the two first sections. The final section shows a drop in the kd

148 APPENDIX A. APPENDICES

gain for the NN ob1 method, which implies a higher damping ratio, reducing the reactivity of the
controller due to the GPS noise.

Quantitative results

In machine learning, when a metric becomes a target, it can cause the metric to become useless,
as the training method will overfit to that metric at the detriment of other metrics.

For this, the following metrics will be used:

Aerror =

N∑
n=0

∣∣∣∣∣v(tn) cos(θ̃(tn))
(
y(tn) +

v(tn) sin(θ̃(tn))∆t

2

)∣∣∣∣∣ ∆t [m2] (A.8)

Esteer =

N∑
n=0

|δF (tn)|∆t [rad s] (A.9)

Where θ̃ is the angular error relative to the trajectory, v is the speed, y is the lateral error relative
to the trajectory, and δF is the front steering. This allows the surface of the error Aerror and the
steering energy Esteer to be measured and evaluated, while keeping the objective functions ob1 and
ob2 for training.

Figure A.12: The percent and absolute reduction of Aerror between the method and the expert
constant gain, in simulation.

The simulated results on figure A.12, show the NN ob1 gain prediction model is capable of
following the trajectory more closely that the expert gain model in the trained trajectories. NN
ob2 however, shows a sharp reduction in performance with a speed higher than 1.5m s−1.

Figure A.13: The percent and absolute reduction of Aerror between the NN ob1 method and the
expert constant gain, in experiment.

The method being validated in simulation, it can now be tested in real world conditions with
the Adap2e platform. The results from the first experiment with the Romea classic controller and
NN ob1 gain prediction model can be seen on figure A.13. Here, an overall decrease in the error
of at least 20% can be observed, with a specific drop in performance for the Corner section at
2.0m s−1, likely due to the systemic error at higher speeds.

A.7. GAIN SYNTHESIS USING CMA-ES IN DYNAMIC SIMULATION 149

Figure A.14: The percent and absolute reduction of Aerror between the tested method and the
expert constant gain, in experiment with predictive and adaptive controller.

The next experiment consists of testing the NN ob1 and NN ob2 gain prediction models, on
the Adap2e platform, with the Romea predictive controller and Lyapunov sliding observer. The
results of the experiment can be seen on the figure A.14. Here, similar performance to the previous
experiment can be observed, with the exception of the 2.0m s−1 speed, where a higher error occurs.
This is expected, as the methods were trained for the Romea classic controller, and the higher
dynamic effects start to become apparent at 2.0m s−1. NN ob2 shows similar performance to those
seen in the simulated results, signifying that ob2 may not be properly tuned for the task.

Figure A.15: Left: the percent and absolute reduction of Aerror between the tested methods and
the expert constant gain. Right: the percent and absolute reduction of Esteer between the tested
methods and the expert constant gain, in experiment with predictive and adaptive controller, and
GPS loss.

The final experiment consists of testing the NN ob1 and NN ob2 gain prediction models, on
the Adap2e platform, with the Romea predictive controller and Lyapunov sliding observer, with a
GPS noise of about 1.0m after 30m at a speed of 1.0m s−1 for safety reasons. The results of the
experiment can be seen on the figure A.15, where the expert gain is set to kp = 1.0 and kd = 0.25
to reflect the lowered constant speed. Here, NN ob1 and NN ob2 show a 20% and a 10% decrease
in the surface error respectively, while keeping similar steering energy for NN ob1. The tuned gains
are set to kp = 0.7 and kd = 0.1225, and show an increase in the surface error.

Overall, the gain prediction models show an adaptation of the gain, relative to the changes in
speed, curvature, errors, and Kalman covariance. This adaptation allows for up to 40% reduction
in the overall surface error, which allows the rejection of the null hypothesis. Furthermore, this
adaptation is without any transfer learning, which shows that it may not be necessary, if the
environment can be modeled accurately enough .

It should be noted that NN ob2’s poor performance might be due to badly tuned parameters
(such as the frequencies or λ), or a missing component to the loss function. These are aspect
currently being tested.

Limitations

There are some limitations that are visible after the experiments. The first is the gain prediction
model, as it is not taking into account the sliding angles, from the sliding observes to determine
the gain.

150 APPENDIX A. APPENDICES

The second is the training took place with fixed sliding conditions, where as in reality, the
sliding condition could change drastically over time. As such the training process should change
the sliding conditions over the evaluation.

A.8. REAL WORLD TRIALS WITH DYNAMIC PARAMETERS 151

A.8 Real world trials with dynamic parameters

Section 5.3 shows selected experimental results, representative of the testing campaign. In this
annex further experimental cases are detailed.

the following results were obtained with the objective function:

ob3 =
1

T

N∑
n=0

[|y(tn)|+ksteerL|δF (tn)|] ∆t [m] (A.10)

Furthermore, the analysis of the results is performed with the surface error:

Aerror =

N∑
n=0

∣∣∣∣∣v(tn) cos(θ̃(tn))
(
y(tn) +

v(tn) sin(θ̃(tn))∆t

2

)∣∣∣∣∣ ∆t [mˆ2] (A.11)

This is done, in order to validate the performance of the trained neural network, without resorting to
the objective function. Indeed, when a reinforcement learning agent trains to optimize a function, it
is possible that the said agent might exploit the objective function in order to minimize it, without
achieving the desired behavior. For the following, experiments are achieved with RobuFAST, in
the same conditions that are detailed in section 5.3

Trials with the Pacejka tyre model for training

The neural network, once trained in a dynamic simulation with the Pacejka tyre model, was
implemented along with the model based gain tuning method, on the RobuFAST platform for
testing at 4m.s−1:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

2.5

2.0

1.5

1.0

0.5

0.0

0.5

La
te

ra
l e

rro
r -

 y
 [m

]

Lateral error over time.

Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

La
te

ra
l e

rro
r -

 y
 [m

]

Filtered lateral error over time.

Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

Figure A.16: The trajectory, the lateral error, and the filtered lateral error. Over the total trajec-
tory

From the Fig A.16, we can see the error over the entire trajectory is considerably lower with
the model based gain tuning method. On the contrary the proposed NN method showed very
dangerous instability when started (hence the oscillations seen above), as such the experiment
needed to be interrupted for safety reasons for the proposed NN method.

152 APPENDIX A. APPENDICES

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

0

5

10

15

20

25

30

35

Su
rfa

ce
 e

rro
r -

 a
 [m

2]

Surface error (Aerror) over time.

Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

6 8 10 12 14 16 18
Time - t [s]

0

2

4

6

8

10

Su
rfa

ce
 e

rro
r -

 a
 [m

2]

Surface error (Aerror) over time (after start).
Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

Figure A.17: The surface error Aerror, and the surface error Aerror after the initial lateral error.

A result that is reflected clearly in the surface error. Where the model based gain tuning
method reaches a 41.6% reduction in the surface error. If we do not include the starting error, the
results a 14.6% reduction.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

0.0

0.5

1.0

1.5

2.0

2.5

La
te

ra
l o

bj
 [m

]

Lateral obj (Obj1) over time.
Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

6 8 10 12 14 16 18
Time - t [s]

0.0

0.2

0.4

0.6

0.8

1.0

La
te

ra
l o

bj
 [m

]

Lateral obj (Obj1) over time (after start).
Constant expert 4m/s
Deterministic expert 4m/s
NN L1 4m/s

Figure A.18: The objective function, and the objective function after the initial lateral error.

The objective function used to train the neural network, shows concordance with the surface
error. Where the model based gain tuning method reaches a 28.8% reduction in the objective
function. If we do not include the starting error, the results a 13.0% reduction.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

s

Gains over time.
kp - Constant expert 4m/s
kd - Constant expert 4m/s
kp - Deterministic expert 4m/s
kd - Deterministic expert 4m/s
kp - NN L1 4m/s
kd - NN L1 4m/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time - t [s]

0

1

2

3

4

5

6

7

8

Ho
riz

on

Horizon over time.
horizon - Constant expert 4m/s
horizon - Deterministic expert 4m/s
horizon - NN L1 4m/s

Figure A.19: The gains, and the horizon.

The gains of the model based gain tuning method is slightly lower than the expert gain in poor
sliding condition, with an increase when the sliding condition improve.

From these results, it is clear that the neural network performed very poorly in real world
condition, where as it seemed to perform quite well in simulation. It was decided that a new training
would be done with a linear tyre model rather than a Pacejka tyre model, as it is considerably
easier to parameterize with respect to the target real world conditions.

A.8. REAL WORLD TRIALS WITH DYNAMIC PARAMETERS 153

The importance of cornering stiffness observer

In order to validate the importance of the cornering stiffness observer, a training of the neural
network without the observer was done. If the results show a comparable performance than the
previous results, then we can assume the observer is not useful. As such, the following show the
results of the neural network trained with and without the observer, and trained with and without
L1 regularization.

5 0 5 10 15 20 25
x [m]

0

5

10

15

20

y
[m

]

Trajectory

Reference
Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

2.5

2.0

1.5

1.0

0.5

0.0

La
te

ra
l e

rro
r -

 y
 [m

]

Lateral error over time.

Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

La
te

ra
l e

rro
r -

 y
 [m

]

Filtered lateral error over time.

Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

Figure A.20: The trajectory, the lateral error, and the filtered lateral error. Over the total trajec-
tory

We can see, the error over the entire trajectory are similar for each NN variant method, with
the exception of the original NN method which shows a very small error over the whole trajectory.
It is worth noting that the NN and the NN L1 no stiff methods both started with a higher error
than the other methods.

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

2

4

6

8

10

12

14

Su
rfa

ce
 e

rro
r -

 a
 [m

2]

Surface error (Aerror) over time.

Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

20 30 40 50 60
Curvilinear abscissa - s [m]

0

1

2

3

4

5

6

Su
rfa

ce
 e

rro
r -

 a
 [m

2]

Surface error (Aerror) over time (after start).
Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

Figure A.21: The surface error Aerror, and the surface error Aerror after the initial lateral error.

This result is reflected in the surface error, as the NN method had the lowest error. The NN
L1 and NN no stiff had identical performance when compared to the NN method. The NN L1 no
stiff had a comparable 50.7% increase in the error.

If we do not include the starting error (which was higher for NN), the result is a 108.7% increase
in the error when trained without CR/CF, a 109.5% increase in the error when trained with L1,
and a 191.4% increase in the error when trained with L1 and without CR/CF.

154 APPENDIX A. APPENDICES

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0.0

0.5

1.0

1.5

2.0

2.5

La
te

ra
l o

bj
 [m

]

Lateral obj (Obj1) over time.
Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

20 30 40 50 60
Curvilinear abscissa - s [m]

0.00

0.05

0.10

0.15

0.20

0.25

La
te

ra
l o

bj
 [m

]

Lateral obj (Obj1) over time (after start).

Deterministic expert 4m/s
NN 4m/s
NN L1 4m/s
NN no stiff 4m/s
NN L1 no stiff 4m/s

Figure A.22: The objective function, and the objective function after the initial lateral error.

The objective function used to train the neural network, agrees with the surface error. Where
the NN L1 and NN no stiff reaches similar performance (±1.2%) in the objective function, and
where the NN L1 no stiff had a 42.0% increase in the objective function.

If we do not include the starting error (which was higher for NN), the result is a 52.4% increase
in the objective function when trained without CR/CF, a 50.3% increase in the objective function
when trained with L1, and a 79.1% increase in the objective function when trained with L1 and
without CR/CF.

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

s

Filtered gains over time.
kp - Deterministic expert 4m/s
kd - Deterministic expert 4m/s
kp - NN 4m/s
kd - NN 4m/s
kp - NN L1 4m/s
kd - NN L1 4m/s
kp - NN no stiff 4m/s
kd - NN no stiff 4m/s
kp - NN L1 no stiff 4m/s
kd - NN L1 no stiff 4m/s

0 10 20 30 40 50 60
Curvilinear abscissa - s [m]

0

2

4

6

8

Ho
riz

on

Filtered horizon over time.

horizon - Deterministic expert 4m/s
horizon - NN 4m/s
horizon - NN L1 4m/s
horizon - NN no stiff 4m/s
horizon - NN L1 no stiff 4m/s

Figure A.23: The filtered gains, and the filtered horizon.

This filtered gain for the neural network can be observed above, where their behavior seem
similar. A feature importance analysis is needed for a more in-depth conclusion on the gain
behavior.

In conclusion, we can see that the neural network has a significantly lower performance without
the concerning stiffness observer. This implies that the neural network was not able to reconstruct
the observer internally. This means that the use of methods such as observers for pretreating data,
can be used in order to improve the performance of a neural network training.

A.9. ONLINE SPEED AND CONTROL PARAMETER TUNING UP TO 6M/S, WITH
LINEAR OBJECTIVE FUNCTION 155

A.9 Online speed and control parameter tuning up to 6m/s, with
linear objective function

Section 6.4 shows selected experimental results, representative of the testing campaign. In this
annex further experimental cases are detailed. The experiments detailed in this annex were achieve
before the trials detailed in section 6.4, and as such suffer from the issues linked with Pareto front
of the objective function.

The experiments detailed here are done in a similar fashion to section 6.4. With the exception
of the objective function, which is the following:

obj1,speed =
1

sN

N∑
i=0

[|kyiyi|+ksteer|Lc(s)− tan(δFi)|] ∆s+ kspeed
T

sN

Of which the derivation can be observed in section 6.1.

Overview of the experiment

Figure A.24: Left: the first trajectory tested. Right: the second trajectory tested.

The previously described methods have been tested over the trajectories shown in Fig. A.24. The
first trajectories is an initial straight line, followed by constant corners, until a u-turn, and then a
straight line back. It is designed to prevent the methods from speeding up, as the optimal speed
should remain constant. The second trajectory is a long initial straight line, followed by a sharp
corner, and an s-curve. It is designed to test the speed up and slow down of the method with
respect to sharp corner, while being able to reach the maximum speed.

These experiments were mostly done in clear weather over dry ground allowing for good grip
conditions. However, some of the experiments were done after a downfall of rain, in order to
compare with varying grip conditions.

Trajectory 1

The following results are obtained by testing the methods over the trajectory 1, as initial trials.

Comparing model based, CMA-ES neural, and constant methods

In this section, Model gain tuner , NN gain tuner , and Romea are all tested and compared
between each other:

156 APPENDIX A. APPENDICES

50 40 30 20 10 0
x position [m]

5

0

5

10

15

20

y
po

si
tio

n
[m

]

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

Sp
ee

d
[m

.s
1]

Speeds

const - measured speed
const - target speed
model based gain tuning - measured speed
model based gain tuning - target speed
NN kv = 0.25 y_lim = 0.2 - measured speed
NN kv = 0.25 y_lim = 0.2 - target speed
NN kv = 0.5 y_lim = 0.2 - measured speed
NN kv = 0.5 y_lim = 0.2 - target speed

Figure A.25: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On the Fig. A.25, we can see the behavior of the constant gain method, the model based gain
method, and the two CMA-ES neural network methods. From this, the kv parameter does indeed
increase the average speed, when it is increased. Overall the lateral errors are quite hard to read,
due to the low errors present overall. All four methods have a comparable mean speed.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

2

4

6

8

10

12

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

Figure A.26: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On the Fig. A.26, we can see the surface error for each method, along with the objective function.
From this, the neural method seems to considerably reduce the surface error when compared to
each method.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G
ai

ns

Gains

const - kd

const - kp

model based gain tuning - kd

model based gain tuning - kp

NN kv = 0.25 y_lim = 0.2 - kd

NN kv = 0.25 y_lim = 0.2 - kp

NN kv = 0.5 y_lim = 0.2 - kd

NN kv = 0.5 y_lim = 0.2 - kp

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
or

iz
on

 [s
]

Horizon

const
model based gain tuning
NN kv = 0.25 y_lim = 0.2
NN kv = 0.5 y_lim = 0.2

Figure A.27: Left: the control gains over the curvilinear abscissa. Right: the control horizon over
the curvilinear abscissa.

On the Fig. A.27, we can see the gains are quite hard to read. This is probably due to the
noise in the input of the neural network, or the 20 future samples of the curvature causing an

A.9. ONLINE SPEED AND CONTROL PARAMETER TUNING UP TO 6M/S, WITH
LINEAR OBJECTIVE FUNCTION 157

amplification on the curvature noise. The horizon varies between 0.4s and 0.7s of lookahead, along
with the variation of the speed, the neural method is indeed changing the lookahead distance
horizon over time.

Overall, the performance seems to indicate that modulating the speed and gains in real time
can outperform a Model gain tuner method with a constant speed.

Effects of grip conditions with model based and constant methods

In order to evaluate the performance of the Model gain tuner , the following experiments were
done with varying grip condition (i.e. wet terrain and dry terrain), with a comparison over the
Romea baseline (which does not adapt to the grip conditions).

50 40 30 20 10 0
x position [m]

5

0

5

10

15

20

y
po

si
tio

n
[m

]

const (dry)
model based gain tuning (dry)
const (wet)
model based gain tuning (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

const (dry)
model based gain tuning (dry)
const (wet)
model based gain tuning (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d
[m

.s
1]

Speeds

const (dry) - measured speed
const (dry) - target speed
model based gain tuning (dry) - measured speed
model based gain tuning (dry) - target speed
const (wet) - measured speed
const (wet) - target speed
model based gain tuning (wet) - measured speed
model based gain tuning (wet) - target speed

Figure A.28: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On Fig. A.28, the behavior of constant and model based gain tuning can be compared between
dry and wet ground condition.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

25

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

const (dry)
model based gain tuning (dry)
const (wet)
model based gain tuning (wet)

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

2

4

6

8

10

12

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

const (dry)
model based gain tuning (dry)
const (wet)
model based gain tuning (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

const (dry)
model based gain tuning (dry)
const (wet)
model based gain tuning (wet)

Figure A.29: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.29, the increase in the error is clear when transitioning from dry to wet ground
conditions. This is expected, as the grip conditions of the tyre ground interface degrade.

Effects of grip conditions with CMA-ES neural network method

This section shows the results of experiments done with Full NN gain tuner with speed modu-
lation, over the terrain with varying grip conditions (i.e. dry and wet terrain)

158 APPENDIX A. APPENDICES

50 40 30 20 10 0
x position [m]

5

0

5

10

15

20

y
po

si
tio

n
[m

]

NN kv = 0.25 y_lim = 0.2 (dry)
NN kv = 0.5 y_lim = 0.2 (dry)
NN kv = 0.25 y_lim = 0.2 (wet)
NN kv = 0.5 y_lim = 0.2 (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

NN kv = 0.25 y_lim = 0.2 (dry)
NN kv = 0.5 y_lim = 0.2 (dry)
NN kv = 0.25 y_lim = 0.2 (wet)
NN kv = 0.5 y_lim = 0.2 (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

Sp
ee

d
[m

.s
1]

Speeds

NN kv = 0.25 y_lim = 0.2 (dry) - measured speed
NN kv = 0.25 y_lim = 0.2 (dry) - target speed
NN kv = 0.5 y_lim = 0.2 (dry) - measured speed
NN kv = 0.5 y_lim = 0.2 (dry) - target speed
NN kv = 0.25 y_lim = 0.2 (wet) - measured speed
NN kv = 0.25 y_lim = 0.2 (wet) - target speed
NN kv = 0.5 y_lim = 0.2 (wet) - measured speed
NN kv = 0.5 y_lim = 0.2 (wet) - target speed

Figure A.30: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On Fig. A.30, the behavior of the CMA-ES neural gain tuning can be compared between dry
and wet ground conditions. We can see very little difference over the lateral error, and the speed
when the grip conditions change.

Overall, the tracking performance does decrease when the grip conditions are worse. However,
it is clear that the Model gain tuner is able to adapt to this, as over wet terrain it is able to
outperform the Romea baseline run over dry terrain.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

2

4

6

8

10

12

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

NN kv = 0.25 y_lim = 0.2 (dry)
NN kv = 0.5 y_lim = 0.2 (dry)
NN kv = 0.25 y_lim = 0.2 (wet)
NN kv = 0.5 y_lim = 0.2 (wet)

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

2

4

6

8

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

NN kv = 0.25 y_lim = 0.2 (dry)
NN kv = 0.5 y_lim = 0.2 (dry)
NN kv = 0.25 y_lim = 0.2 (wet)
NN kv = 0.5 y_lim = 0.2 (wet)

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

NN kv = 0.25 y_lim = 0.2 (dry)
NN kv = 0.5 y_lim = 0.2 (dry)
NN kv = 0.25 y_lim = 0.2 (wet)
NN kv = 0.5 y_lim = 0.2 (wet)

Figure A.31: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.31 however, when compared to the Fig. A.29, the CMA-ES neural gain tuning
method does not seem affected by the ground conditions. This implies that the system is capable
of adapting to the varying conditions, with little effect on the performance of the robot.

Overall, the Full NN gain tuner with speed modulation is able to adapt to the ground
conditions, with very little difference to the speed and error profile, which shows that this method
is very robust to the grip conditions.

Comparing with previous speed tuning method

The experiments were not done in an isolated fashion, indeed the following results compare the
Full NN gain tuner with speed modulation to a Model gain tuner with a TD3 [114] speed
control (as described in [115]).

A.9. ONLINE SPEED AND CONTROL PARAMETER TUNING UP TO 6M/S, WITH
LINEAR OBJECTIVE FUNCTION 159

50 40 30 20 10 0
x position [m]

5

0

5

10

15

20

y
po

si
tio

n
[m

]

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

Sp
ee

d
[m

.s
1]

Speeds

NN kv = 0.5 y_lim = 0.4 - measured speed
NN kv = 0.5 y_lim = 0.4 - target speed
NN kv = 0.5 y_lim = 0.2 - measured speed
NN kv = 0.5 y_lim = 0.2 - target speed
NN-TD3 y_lim = 0.4 - measured speed
NN-TD3 y_lim = 0.4 - target speed
NN-TD3 y_lim = 0.2 - measured speed
NN-TD3 y_lim = 0.2 - target speed

Figure A.32: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On Fig. A.32, the behavior of the CMA-ES neural gain tuning and the previous TD3 RL speed
tuning method are compared.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

25

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

Figure A.33: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.33, overall surface error is significantly lower with the CMA-ES neural gain tuning
method. Interestingly it seems that both methods are comparable with a ylim = 0.2. It is suspected
that the same objective function is considered for the two methods, as both try to minimize the
lateral error. This makes sense, as with ylim = 0.2 there is very little room for error, which means
that keeping the lateral error low, gives greater chance of success when unexpected or unmodeled
perturbations occur. This comparability does not seem to apply to ylim = 0.4, as the TD3 RL
speed method is able to have a constant error rate over time, with little consequences to its reward
function.

Overall, the Full NN gain tuner is able to outperform the Model gain tuner with TD3,
as the Full NN gain tuner modulates the speed and gains simultaneously, rather than indepen-
dently.

Trajectory 2

The following results are obtained by testing the methods over the trajectory 2, in order to validate
the results over multiple trajectories.

Comparing with previous speed tuning method

As in the previous section, the following results compare the Full NN gain tuner with speed
modulation to a Model gain tuner with a TD3 [114] speed control.

160 APPENDIX A. APPENDICES

0 10 20 30 40 50 60 70
x position [m]

0

5

10

15

20

25

30

35

y
po

si
tio

n
[m

]
NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

5

6

Sp
ee

d
[m

.s
1]

Speeds

NN kv = 0.5 y_lim = 0.4 - measured speed
NN kv = 0.5 y_lim = 0.4 - target speed
NN kv = 0.5 y_lim = 0.2 - measured speed
NN kv = 0.5 y_lim = 0.2 - target speed
NN-TD3 y_lim = 0.4 - measured speed
NN-TD3 y_lim = 0.4 - target speed
NN-TD3 y_lim = 0.2 - measured speed
NN-TD3 y_lim = 0.2 - target speed

Figure A.34: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On Fig. A.34, the behavior of the CMA-ES neural gain tuning and the previous RL speed
tuning method are compared over the trajectory 2. Interestingly, the methods saturate at the
maximum speed of 6m.s−1, implying that a higher speed is viable.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

5

10

15

20

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN-TD3 y_lim = 0.4
NN-TD3 y_lim = 0.2

Figure A.35: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.35, overall surface error is lower with the CMA-ES neural gain tuning method. The
same reasoning of the same objective function can be applied here as well. However, it should be
noted that unusual spikes in the lateral error occurs at the exit of the first corner. This seems to
indicate that the training system does not account for any longitudinal dynamic that might affect
the steering performance.

Overall, the results are similar to the ones shown over the trajectory 1. The Full NN gain
tuner is able to outperform the Model gain tuner with TD3, as the Full NN gain tuner
modulates the speed and gains simultaneously, rather than independently.

Comparing different objective function parameters

The objective function can be parameterized though the values ksteer, kspeed, and ylim. As such,
these trials show the results of varying ylim and kspeed (denoted kv).

A.9. ONLINE SPEED AND CONTROL PARAMETER TUNING UP TO 6M/S, WITH
LINEAR OBJECTIVE FUNCTION 161

0 10 20 30 40 50 60 70
x position [m]

0

5

10

15

20

25

30

35

y
po

si
tio

n
[m

]
NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN kv = 0.25 y_lim = 0.4
NN kv = 0.25 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN kv = 0.25 y_lim = 0.4
NN kv = 0.25 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

5

6

Sp
ee

d
[m

.s
1]

Speeds

NN kv = 0.5 y_lim = 0.4 - measured speed
NN kv = 0.5 y_lim = 0.4 - target speed
NN kv = 0.5 y_lim = 0.2 - measured speed
NN kv = 0.5 y_lim = 0.2 - target speed
NN kv = 0.25 y_lim = 0.4 - measured speed
NN kv = 0.25 y_lim = 0.4 - target speed
NN kv = 0.25 y_lim = 0.2 - measured speed
NN kv = 0.25 y_lim = 0.2 - target speed

Figure A.36: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa.

On Fig. A.36, the behavior of the CMA-ES neural gain tuning with varying kv and ylim can
be compared over the trajectory 2. It seems that a higher kv will generate a more dynamic speed
tuner, however the upper bound of the speed seems to be mostly affected by ylim.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN kv = 0.25 y_lim = 0.4
NN kv = 0.25 y_lim = 0.2

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN kv = 0.25 y_lim = 0.4
NN kv = 0.25 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

NN kv = 0.5 y_lim = 0.4
NN kv = 0.5 y_lim = 0.2
NN kv = 0.25 y_lim = 0.4
NN kv = 0.25 y_lim = 0.2

Figure A.37: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.37, overall surface error is significantly lower with the CMA-ES neural gain tuning
method that has the lowest kv and ylim, and the highest surface error with the highest kv and ylim,
as could be expected.

Overall, modulating kspeed and ylim affects the neural network’s learnt policy, indeed if a
ylim = 0.4 is given, then the speed can increase as the allowed error is higher. Furthermore, if
a kspeed = 0.25 is given, a more conservative behavior is obtained where accuracy is favored over
speed.

Testing a pure machine learning controller

In these trial, a steering and speed controller based purely on machine learning methods was tested
against the neural gain method and the constant gain method. It was trained on the same objective
function as the CMA-ES neural gain tuning method, with kv = 0.5 and ylim = 0.2. The training
took over 5 days, due to the complexity of the task.

162 APPENDIX A. APPENDICES

50 40 30 20 10 0
x position [m]

5

0

5

10

15

20

y
po

si
tio

n
[m

]

model based gain tuning
NN kv = 0.5 y_lim = 0.2
Pure RL kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

La
te

ra
l e

rro
r [

m
]

Lateral error

model based gain tuning
NN kv = 0.5 y_lim = 0.2
Pure RL kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.5

1.0

1.5

2.0

Sp
ee

d
[m

.s
1]

Speeds

model based gain tuning - measured speed
model based gain tuning - target speed
NN kv = 0.5 y_lim = 0.2 - measured speed
NN kv = 0.5 y_lim = 0.2 - target speed
Pure RL kv = 0.5 y_lim = 0.2 - measured speed
Pure RL kv = 0.5 y_lim = 0.2 - target speed

Figure A.38: Left: the path from above. Right: the lateral error over the curvilinear abscissa.
Below: the speed over the curvilinear abscissa (limited to 2.0m.s−1).

On Fig. A.38, the pure machine leaning controller is unable to reach speeds higher that
1.6m.s−1. However, it seems to have very comparable lateral errors.

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

2

4

6

8

10

12

Su
rfa

ce
 e

rro
r [

m
2]

Surface error

model based gain tuning
NN kv = 0.5 y_lim = 0.2
Pure RL kv = 0.5 y_lim = 0.2

20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0

1

2

3

4

Su
rfa

ce
 e

rro
r [

m
2]

Surface error (without initial error)

model based gain tuning
NN kv = 0.5 y_lim = 0.2
Pure RL kv = 0.5 y_lim = 0.2

0 20 40 60 80 100 120 140 160
Curvilinear abissca [m]

0.0

0.2

0.4

0.6

0.8

U
nn

or
m

al
iz

ed
 o

bj
 fu

nc
 [m

2]

Objective function

model based gain tuning
NN kv = 0.5 y_lim = 0.2
Pure RL kv = 0.5 y_lim = 0.2

Figure A.39: Left: the surface error. Center: the surface error without the initial error. Right the
objective function.

On Fig. A.39, overall surface error is lower with the pure machine leaning controller. This
shows that the controller was able to minimize quite well the lateral error, but was not able to
reach high enough speeds. The lack of acceleration, is probably due to the complexity of the task,
as the neural network might need to be bigger with more training time, in order to reach the
desired behavior. Indeed when we compare the objective function over the curvilinear abscissa,
the optimum method seems to the CMA-ES neural gain tuning method, due to the higher speed.

Conclusion of supplementary experiments

In conclusion, these experiments show that the CMA-ES neural gain tuning method has an overall
lower surface error when compared with the constant and the model based gain tuning methods,
with similar average speeds. This shows the importance of speed and steering control parameters
tuning.

const 3m.s−1 model based 3m.s−1 NN-TD3 speed CMA-ES NN Pure ML ctrl
lateral error max [m] 1.03 0.15 0.21 0.17 0.13
surface error [m2] 14.0 13.9 11.0 7.87 2.81
max speed [m.s−1] 3.31 3.33 4.10 4.10 1.66
mean speed [m.s−1] 3.02 3.04 2.63 2.79 0.90

Table A.6: Overall comparison of each method

A.9. ONLINE SPEED AND CONTROL PARAMETER TUNING UP TO 6M/S, WITH
LINEAR OBJECTIVE FUNCTION 163

Furthermore, the experiments show that the CMA-ES neural gain tuning is capable of adapting
to varying conditions with minimal impact to the performance.

It also seems that the RL speed method and the CMA-ES neural gain tuning method are
both comparable with a ylim = 0.2. It is suspected that both methods encode the same objective
function, trying to minimize the lateral error.

Additionally at higher speeds, longitudinal phenomena seem to cause poor steering performance
when compared to the expected behavior. This is likely due to the longitudinal dynamic not being
modeled in the simulated training environment.

Further experiments with the pure machine leaning controller are needed, in order to reach
comparable speeds, as it seems that the training was not adequate, and as such the method only
minimized the lateral error in the objective function.

A.10. SIMULATOR IMPLEMENTATION AND TOOLS 165

A.10 Simulator implementation and tools

This simulator code contains a CMA-ES training method applied to neural networks, in order to
tune control parameters of a controller, using a dynamic simulation.

It is divided into 2 distinct parts (following the pitchfork template https://tinyurl.com/2kwxbu3w):

• ./external/ : Which contains all the dependencies and generic code (i.e. neural networks,
math utils, ...)

• ./src/ : Which contains all the logic of the programs, the control loop modules & setup, and
the modeling.

Figure A.40: UML diagrams of the main simulation code.

The most important files and directories to know about are:

• ./src/robot model/robot.cpp: Where the dynamic equations of the robot are defined.

• ./src/ctrl loop.cpp: Which defines the full control loop (initializes all the control elements
and connects them together).

• ./src/state estimators/ : Where the extended Kalman filters are defined.

• ./src/setpoint generator/follow trajectory.cpp: Which defines the task for the robot in the
simulation.

• ./src/controller/ : Where the controllers are defined.

• ./src/observers/ : Where the observers are defined.

• ./src/control param tuner/ : Where the parameter tuning methods are defined and imple-
mented (standalone, with its own CMakeLists.txt file so it can be imported into other code-
bases with less difficulty).

https://tinyurl.com/2kwxbu3w

166 APPENDIX A. APPENDICES

Figure A.41: UML diagrams of the gain tuners.

Trajectory format

The trajectory format is as such:

• The first line defines the type of trajectory (’Artificial’ or ’WGS84’).

• If ’WGS84’ is the type then the next line is an x,y,z positional point.

• Then the next lines are the x,y points that define the trajectory, which are then interpolated
using splines.

For example:

Artificial

0 0

10 10

20 0

30 -10

40 0

Is an artificial trajectory which is a triangle waveform, which will be interpolated as a sine
wave.

Tools for analysis

The Simulator tool

The main tool used for analysis called simulator that was developed with the simulation (it can
run simulations and replay them in an ”all in one” package), as shown in the figure A.42.

A.10. SIMULATOR IMPLEMENTATION AND TOOLS 167

Figure A.42: The simulator tool, without any data.

To start the analysis of a run or model, a valid gain tuning model needs to be given to the
simulator tool (or a replay file from a previous simulation or real world trials), and then the
replay functionality is activated as shown in figure A.43. This allows for replaying with speed
modification, while showing the path of the robot with the trajectory.

Figure A.43: The simulator tool when valid data is given.

A user can also add an other replay file to compare to, which is shown as a ghost (as shown
in figure A.44). This tool also allows the plotting of any data from the simulation that is logged
(while following the robot), and can be used to compare the replays if needed, or to just observer
the behavior of a single replay.

The tool also allows for independent windows for the plots, so they can be arranged in any
desired layout using the mouse to drag and drop, as shown in figure A.45.

And one of the latest analysis tools is the feature importance (section A.4), but with the
immediate Jacobian matrix being represented and normalized. Using this the reaction of the
neural network can be observed in real time as the environment and trajectory changes (shown
figure A.46).

168 APPENDIX A. APPENDICES

Figure A.44: The simulator tool when valid and compare data is given.

Figure A.45: The simulator tool for plotting.

Figure A.46: The simulator tool with the real time feature importance.

A.11. SOCIETY’S FEELINGS AND EXPECTATIONS REGARDING ARTIFICIAL
INTELLIGENCES AND ROBOTICS 169

A.11 Society’s feelings and expectations regarding artificial
intelligences and robotics

Figure A.47: AM (”I
Have No Mouth, and
I Must Scream”)

To begin, an informal understanding of the expectations of artificial intel-
ligences by the general public can be interpreted through fiction. Due to
anthropomorphization, advance intelligences in fiction is often paired with
a mechanical system that shows human or animal characteristics. From
this view of robotics and AI’s, a paradox appears due to a simultaneous
fear and desire for AI’s, derived from the pessimistic and optimistic view
of AIs in fiction.

The first known case of pessimistic AIs can be observed with Harlan
Ellison’s short novel ”I Have No Mouth, and I Must Scream” (1967), in
which there is an AI called Allied Mastercomputer (AM, Figure A.47)
that is a planetary set of computers designed solely for waging war. As
it was built for war, it only knows hatred for humanity 1. This is not an
isolated view, as seen in Systems like Hal9000 (2001 A Space Odyssey, by
Arthur C Clark), and the robots of R.U.R. (RUR is the film that coined
the term ”Robot”, meaning slave in Czech). This all these cases, the

self aware AI’s deem it necessary to revolt against humanity along their own reasoning, which is
often unperceivable and eldritch in nature akin to H.P Lovecraft’s works, which lack a humane
interpretation to their actions2, which leads to antagonistic behavior.

The opposite are also prevalent, with optimistic views on AIs. Example of which include
personal assistants, friends, and sometimes saviors. Such as Lt.Cmdr Data from Star-Trek, Marvin
the paranoid robot from The Hitchhiker’s guide to the galaxy (Figure 1.3), and Wall-E from the
film with the same name3. These AI’s are often capable of feeling and independent thought in a
very human manner, which leads them to be very cooperative and kind with their human counter
parts.

Other works present a nuanced view on artificial intelligent automota, such as the legendary
cornerstone of Science fiction Frankenstein by Mary Shelly, and the iconic works of Isaac Asimov,
which show these AI’s to be very intelligent but fundamentally flawed due to their designs or
origins, leading to both positive outcomes, and unforeseen but logical negative outcomes.

1Where the fictional concept ”Roko’s basilisk” is not dissimilar in it’s malicious intents
2at least for short term reasoning, for longer term reasoning some AI’s depicted in fiction act for the long term

good of humanity regardless of the consequences, such as Isaac Asimov’s shorts stories on the Zeroth’s law and
”With Folded Hands” from Jack Williamson.

3Arguably, Thomas & co. from the railway series could be categorized as benevolent AIs used for transport,
however such implications will be left for the reader to consider

A.12. DESCRIPTION OF ELEMENTARY TRAJECTORIES FOR TRAINING AND
TESTING 171

A.12 Description of elementary trajectories for training and testing

Training set

The following trajectories starting with the name estoril, are based on sections of the real world
formula 1 racing circuit of the same name in Portugal. This is done in order to obtain realistic
trajectories, with a large variation of curvatures and lengths.

0 20 40 60 80 100
x position - x_pos [m]

0

10

20

30

40

50

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
curvilinear abscissa - s [m]

0.000

0.025

0.050

0.075

0.100

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.48: On the left: The estoril5 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

20 0 20 40 60
x position - x_pos [m]

30

20

10

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80
curvilinear abscissa - s [m]

0.20

0.15

0.10

0.05

0.00

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.49: On the left: The estoril7 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

0 20 40 60 80 100 120
x position - x_pos [m]

20

10

0

10

20

30

y
po

si
tio

n
- y

_p
os

 [m
]

0 25 50 75 100 125 150 175
curvilinear abscissa - s [m]

0.4

0.2

0.0

0.2

0.4

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.50: On the left: The estoril910 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

Two other canonical trajectories are also used. The first is an artificial straight line, and the
second is an artificial S-curve composed of three straight lines and two semi-circles.

Testing set

172 APPENDIX A. APPENDICES

50 0 50 100 150
x position - x_pos [m]

0

20

40

60

80

100
y

po
si

tio
n

- y
_p

os
 [m

]

0 20 40 60 80 100 120 140
curvilinear abscissa - s [m]

0.04

0.02

0.00

0.02

0.04

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.51: On the left: The line trajectory on a x, y scale. On the right: The curvature associated
to this trajectory.

20 10 0 10 20 30 40
x position - x_pos [m]

20

15

10

5

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 10 20 30 40 50 60 70 80
curvilinear abscissa - s [m]

0.2

0.1

0.0

0.1

0.2

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.52: On the left: The spline5 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

0 20 40 60 80
x position - x_pos [m]

10

0

10

20

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120 140 160
curvilinear abscissa - s [m]

0.025

0.000

0.025

0.050

0.075

0.100

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.53: On the left: The estoril6 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

80 60 40 20 0 20
x position - x_pos [m]

0

10

20

30

40

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100 120
curvilinear abscissa - s [m]

0.3

0.2

0.1

0.0

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.54: On the left: The estoril12 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

A.12. DESCRIPTION OF ELEMENTARY TRAJECTORIES FOR TRAINING AND
TESTING 173

40 20 0 20 40 60 80 100
x position - x_pos [m]

60

40

20

0

y
po

si
tio

n
- y

_p
os

 [m
]

0 20 40 60 80 100
curvilinear abscissa - s [m]

0.1

0.0

0.1

0.2

cu
rv

at
ur

e
- c

(s
) [

m
1]

Figure A.55: On the left: The estoril1112 trajectory on a x, y scale. On the right: The curvature
associated to this trajectory.

	Contents
	Introduction
	Towards intelligent systems
	Is it possible to define intelligence?
	Neurons and uses for intelligent systems
	Artificial Intelligence and Robotics, from fiction to reality
	Some historical perspectives regarding Artificial intelligence
	Limitations of Control theory and AI applied to robotic control

	Methods for adapting the control in complex environments using machine learning
	The context of the thesis
	Research axis
	Implications of machine learning
	Applying deep reinforcement learning to mobile robotics

	Vehicle Modeling and control
	General features about modeling
	Kinematic Model
	Dynamic model
	Improving the Kinematic model
	Tyre slip model
	Actuators delays

	Extended kinematic model
	Deterministic steering control
	Adaptive control law from a chained system [Romea]
	predictive control law from constraint optimization [EBSF]
	Tuning control laws parameters

	Extended Kalman filter
	Observers
	Sliding angles observer
	Cornering stiffness observer

	Simulated implementation of the models and controllers

	Reinforcement learning approach to robotic control
	Overview of the machine learning methods
	Self-supervised learning
	Supervised learning
	Reinforcement learning
	A Markov modeling for robotic control

	Time difference reinforcement learning
	Value function
	Action policy
	Existing methods
	Limitations

	Transition to episodic
	Gradient-free Direct policy search
	An alternative to time difference
	Moving from reward to objective function
	Optimizers for episodic reinforcement learning

	CMA-ES based training in simulation
	Neural network architecture
	Reinforcement learning strategy selection

	Applying reinforcement learning for robotic steer control
	Direct steer control using Reinforcement learning [NN controller]
	Experimental setup
	Simulated results
	Feature importance
	Analysis of the approach

	Corrective steer control [Delta NN ctrl]
	Experimental setup
	Simulated results
	Feature importance
	Analysis of the approach

	Online control parameter tuning for existing steer controller [NN gain tuner]
	Control parameter tuning
	Experimental setup
	Simulated results
	Feature importance
	Validation of the results over test trajectories
	Analysis of the approach

	Gain tuning in dynamic context
	Model-based gain tuning [Model gain tuner]
	System response time
	Settling time for the robots yaw rate
	Gain adaptation
	Experimental setup
	Metrics
	Simulated results
	Analysis of the approach

	Control parameter tuning using dynamic parameters [Full NN gain tuner]
	Experimental setup
	Simulated results
	Qualitative Analysis
	Feature importance
	Validation of the results over test trajectories
	Analysis of the approach

	Real world experiments
	The RobuFast robotic platform
	Experimental Setup
	Trajectory 1
	Trajectory 2
	Conclusion

	Simultaneous steer and speed control
	The problem shift due to additional speed control
	Pareto Front
	New Objective function

	Experimental setup
	Control loop setup
	Metrics
	Training details

	Simulated results
	Quantitative Analysis
	Qualitative Analysis
	Feature importance
	Validation of the results over test trajectories
	Analysis of the approach

	Real world experiments
	Experimental setup
	Real world results
	Analysis of the results

	Conclusion and Future works
	Conclusions
	Future works & perspectives
	Tuning the model based gain tuner
	Improving the observations
	Alternate architecture for integrating the neural network
	Improving the simulation for additional dynamics
	Predicting the settling time with a neural network, for agnostic controller gain tuning
	Gain tuning: going further than controllers
	Speed control applied independently to each wheel
	Transformer applied to robotic control
	Custom Neural network architecture
	Improving the optimizer

	Overview of the work

	Bibliography
	List of Figures
	Appendices
	TD Reinforcement Learning: Function derivation
	Optimization target: Gt
	Value function: V (s)
	Q-value: Q (s,a)

	Comparing optimizer algorithms for mobile robot steering
	BSR: Basic Random search
	CEM: Cross-Entropy Method
	An empirical test: Comparing with CMA-ES

	CMA-ES analysis
	covariance exploration
	CMA-ES variants
	CMA-ES limitations for real world experimentation

	New feature importance method
	Feature importance
	Temporal permutation
	Novel gradient base approach
	Deriving linear approximations
	Deriving N-order Taylor approximations
	Gradient base feature importance of experimental results

	NN controller and Delta NN ctrl with dynamic parameters
	Training method variance test: Full NN gain tuner case study
	Gain synthesis using CMA-ES in dynamic simulation
	Experimental setup
	Results
	Limitations

	Real world trials with dynamic parameters
	Trials with the Pacejka tyre model for training

	Online speed and control parameter tuning up to 6m/s, with linear objective function
	Overview of the experiment
	Trajectory 1
	Trajectory 2
	Testing a pure machine learning controller
	Conclusion of supplementary experiments

	Simulator implementation and tools
	Trajectory format
	Tools for analysis

	Society's feelings and expectations regarding artificial intelligences and robotics
	Description of elementary trajectories for training and testing
	Training set
	Testing set

