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Introduction Controller gains and tuning

Controller gains and tuning - Controller gains

Controller gains :
= Control effort relative to the errors
— Time/distance to convergence
=—> Usually set so the controller is critically damped
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Introduction Controller gains and tuning

Controller gains and tuning - Gains tuning

Desired behaviour from the optimal gain:
@ A fast convergence to the setpoint
@ A non-oscillatory control

@ To minimise the errors

A lot of fixed gain tuning methods exist:
@ Empirical tuning by hand
Algorithmic methods (eg: Ziegler—Nichols)

°
@ A black box optimiser in a simulation
°
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Introduction

Controller gains and tuning

Controller gains and tuning - Short comings of fixed gains

The optimal gain will depend on: /
@ Changes in the environment

@ Changes in the perception //E
quality

@ Highly dynamics system \
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Introduction Dynamic gains

Dynamic gains - Dynamic gain family

Gain tuning

Discrete / Scheduling

Continuous @ Fixed gain
@ Linear o Expert tuned
e Optimiser tuned

@ Neural network based

o Reinforcement @ Gain scheduling

Learning o Fuzzy
o Neuroevolution o Learnt state
o Fixed

Figure 1: Dynamic gain family tree
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Bz
Dynamic gains - Explainability vs adaptability

Explainability
- @ 1: Expert tuned gain
Expert @ 2: Optimiser tuned gain
1 ! ! @ 3: Fuzzy gain scheduling
Only by value ! | @ 4: Learnt state gain scheduling
- 1 - @ 5: Linear equation of the state
agd”'ge':s::se 3 : i @ 6: RL gain adaptation
_ ] | ’ - @ 7: Pure RL controller
Only : : : . Pareto line
experimentally I I I
l i —> Adaptability
| | |

Linear

Figure 2: Explainability and adaptability compromise in controllers with gains.
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Gain adaptation
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(CEINIELETEIIN Overview

Overview - Control Loop

Training
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Figure 3: Overview of the proposed method.
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(CEINIELETEIIN Overview
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Gain prediction Model - Neural network

Hidden layer
Hidden layer 100 Perceptron
40 Hidden layer
Input layer 10 oy
’ Output layer
1 X WD
I z
X Wp

Figure 4: The Prediction model.
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Gain adaptation Training

Training - CMA-ES

Figure 5: The CMA Evolution strategy.®
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Gain adaptation Training

Training - Objective functions

The tested Objective functions:

o
.
oby = lec(r)] + |ea(r) L|
7=0
o
.
oby = Y ler () + leo(r) L| + |usteer(T) L]
7=0
o
.
obs = " |ec(7)] + leo(7) L] + Keteer |tsteer() L]
=0

obs is a generalisation of ob; and oby, with kseer defining the penalty for
the energy of the steering.
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Localisation process and control
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AR
Modelling - Robot model

Figure 6: The mobile robot studied.

Ashley Hill*, Eric Lucet™, & Rolan nain< Neuroevolution for real-time gain tuning 30th July 2019

14 / 37



AR
Modelling - Controller

L cos® k
up = arctan (103560 <2 \/Etanee . p€L n K >> 2

— KeL 1— ke, cos?(eq)

with :
@ K the curvature
@ L the wheel base length

@ ¢; the lateral error

€p the angular error

kp the gain defining the theoretical distance of convergence of the robot to
the trajectory

2Lenain et al., "Robust sideslip angles observer for accurate off-road path tracking
control”.
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Localisation process and control Localisation

Localisation - Extended Kalman Filter

Robot

Estimated State

Observation

Prediction

State & Covariance

Predicted State
Controller

Figure 7: The Prediction model.3

3Welch and Bishop, An Introduction to the Kalman Filter.
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Trajectories - The tested trajectories
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Figure 8: line, sine, and parabola trajectories, with a change lane.
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Trajectories - The tested trajectories
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Figure 9: splinel and spline2 trajectories, with a change lane.
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REIS  Qualitative results

Qualitative results - Gains vs path
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Figure 10: Above: the path, below: the gain
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Qualitative results - Gains vs curvature
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Figure 11: Above: the curvature, below: the gain
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Qualitative results - Steering output
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Figure 12: Above: the steering for the fixed gain, below: the steering for the
proposed method
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Quantitative results
Quantitative results - Welsh t-test

trajectory oby obs
line 3.22e—2 | 1.80e—8 | 7.0le—5
sine 1.6le—4 | 4.07e—9 | 6.06e—7
parabola | 6.53e—12 | 4.20e—21 | 1.49e—17
splinel | 2.09e—28 | 3.63e—21 | 5.08e—19
spline2 3.48e—1 | 8.42e—16 | 1.49¢—9

Table 1: Welch test* p-values between fixed gain and the suggested method, for
every trajectory over the objective functions. With kgteer = 0.5 °.

*Welch, “The generalization of ‘student’s’ problem when several different population
varlances are involved”.
5The value of kseer Was chosen so obs would be the compromise between ob; and ob,
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Quantitative results - Objective function performance

trajectory ob; obs
line 3.145% | 13.69% | 9.466%
sine 4.165% | 4.575% | 4.612%
parabola | 6.787%
splinel 17.16% | 17.20%
spline2 4.780% | 10.68% | 7.569%

Table 2: The percentage improvement of the objective functions for every

trajectory relative to the fixed gain. With Kkseer = 0.5.

Ashley Hill*, Eric Lucet™, & Roland Lenain Neuroevolution for real-time gain tuning

30t July 2019

24 /37



Conclusion

Contents

© Conclusion
@ Advantages
@ Limitations
@ Future works
@ End of the presentation

Ashley Hill*, Eric Lucet™, & Roland Lenain Neuroevolution for real-time gain tuning

30t July 2019

25 /37



Advantages - Comparison to gain tuning methods

Advantages of this method:

@ Robot independent
Controller independent
Minimal prior knowledge
Optimisable for a given task

Real time adaptation to external condition

A 10% to 20% improvement when compared to a constant gain in the
example task
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Conclusion Limitations

Limitations

Objective function selection
@ Task specific
@ Avoid local optima

Systematic error due to simulation
@ Real world perturbation and noise
@ Model error

Training time
o CMA-ES Sample inefficient (1 year simulated time)
@ 5 hours wall time with 8 CPU cores of a i7-6820HQ

No stability proof:
@ NN black boxes
@ Only proof of stability through gain bounds
Neuroevolution for real-time gain tuning 30t July 2019 27 /37



Conclusion Future works

Future works

@ Multiple gains prediction
@ Dynamic simulation with action delay
@ Tests on real robotics

Teaser:

— target trajectory

robot NN trajectory
24 robot NN trajectory front
—— robot cont —
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Thank You.
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RL vs CMA-ES NN

trajectory | CMA-ES SAC PPO DDPG A2C fixed gain
NN
line 60.99 115.11 158.14 57.52 48.20
(£22.21) | (+57.10) | (+4.09) (£15.12) | (+2.45)
sine 1140.52 240393 | 309.18 280.51 151.70
(£2.86) (+3004.65) | (+2824.32) | (+5.79) (£175.61)
parabola 101.48 389.65 417.99 208.80 125.29
(+£3.39) (£6.34) (£6.23) (+26.57) | (+4.02)
splinel 508.24 2864.41 | 272.20 542.85 142.04
(+152.24) | (£14.31) | (£5.27) (£4.47) (£3.45)
spline2 6563.63 | 3169.80 258.85 437.22 164.94
(+3310.81) | (£23.61) | (£26.39) | (+£736.97) | (+4.45)

Table 3: The values of the objective function ob, for every trajectory with RL
methods. RL algorithms from the Stable-baselines library®

SHill et al., Stable Baselines.
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Robot equation

X v cos(6) + ay
y v sin(0) + oy,
X=1%1= 1
oi v tan(uzLJraU2) + ap ( )
v up + oy
with:
@ x,y The position in the global reference

6 The direction of the robot
v The speed of the robot
u1 The acceleration command

up The steering command

« White noise
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Appendix

Qualitative results - Ablation
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Figure 13: Above: the gain without the curvature, below: the gain without the
Kalman covariance

Ashley Hillt, Eric Lucet!, & Roland Lenain® Neuroevolution for real-time gain tuning 30th July 2019 34 /37



Appendix

Qualitative results - Training over time
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Figure 14: The gain over the training history
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Appendix

Objective function values

obq oby obs
trajectory | CMA-ES fixed gain | CMA-ES fixed gain | CMA-ES fixed gain
NN NN NN
line 27.41 28.30 41.60 48.20 36.63 40.46
(+1.98) (+2.08) (£2.34) (+2.45) (£2.63) (£4.65)
sine 39.81 41.54 144.76 151.70 94.11 98.66
(£2.18) (£2.18) | (+2.86) (£2.83) | (+2.32) (+£2.37)
parabola | 64.41 69.10 98.73 125.29 83.38 101.62
(+£2.90) (£3.04) (£3.39) (+4.02) (£3.27) (£4.00)
splinel 52.34 59.79 117.66 142.04 87.30 105.43
(+2.14) (£2.52) (+3.04) (£3.45) (£3.07) (£3.54)
spline2 | 68.33 71.76 147.32 164.94 110.03 119.04
(+2.59) (£25.26) (£3.18) (+4.45) (£3.12) (£3.79)

Table 4: The values of the objective functions for every trajectory. With

Ksteer = 0.5.
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Appendix

Bi-gain
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Figure 15: Above: the path, below: the gain
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