Neuroevolution with CMA-ES for real-time gain tuning of a car-like robot controller

Ashley Hill¹, Eric Lucet¹, & Roland Lenain²

CEA, LIST, Interactive Robotics Laboratory¹ Université Clermont Auvergne, Irstea, UR TSCF²

30th July 2019

Contents

- Controller gains and tuning
- Dynamic gains

Gain adaptation

Localisation process and control

4 Results

5 Conclusion

Controller gains and tuning - Controller gains

Controller gains :

- \implies Control effort relative to the errors
- \implies Time/distance to convergence
- \implies Usually set so the controller is critically damped

Controller gains and tuning - Gains tuning

Desired behaviour from the optimal gain:

- A fast convergence to the setpoint
- A non-oscillatory control
- To minimise the errors

A lot of fixed gain tuning methods exist:

- Empirical tuning by hand
- Algorithmic methods (eg: Ziegler-Nichols)
- A black box optimiser in a simulation

• ...

Controller gains and tuning - Short comings of fixed gains

The optimal gain will depend on:

- Changes in the environment
- Changes in the perception quality
- Highly dynamics system

Dynamic gains - Dynamic gain family

Figure 1: Dynamic gain family tree

Dynamic gains - Explainability vs adaptability

Figure 2: Explainability and adaptability compromise in controllers with gains.

Contents

Introduction

2 Gain adaptation

- Overview
- Gain prediction Model
- Training

4 Results

Training

Training - Online testing

Training - Offline updating

Training - Online testing

Training - Offline updating

Training - Online testing

Training - Offline updating

End of training

Gain prediction Model - Neural network

Figure 4: The Prediction model.

Training - CMA-ES

Figure 5: The CMA Evolution strategy.¹

¹Hansen, "The CMA Evolution Strategy: A Tutorial".

Ashley Hill¹, Eric Lucet¹, & Roland Lenain² Neuroevolution for real-time gain tuning

Training - Objective functions

The tested Objective functions:

۲

۲

۲

$$\textit{ob}_1 = \sum_{ au=0}^T |\epsilon_L(au)| + |\epsilon_ heta(au) \, L|$$

$$ob_2 = \sum_{ au=0}^T |\epsilon_L(au)| + |\epsilon_ heta(au) L| + |u_{ ext{steer}}(au) L|$$

$$ob_3 = \sum_{ au=0}^{T} |\epsilon_L(au)| + |\epsilon_{ heta}(au) L| + k_{ ext{steer}} |u_{ ext{steer}}(au) L|$$

 ob_3 is a generalisation of ob_1 and ob_2 , with k_{steer} defining the penalty for the energy of the steering.

Contents

2) Gain adaptation

Localisation process and control
 Modelling

Localisation

4 Results

5 Conclusior

Modelling - Robot model

Figure 6: The mobile robot studied.

Modelling

Modelling - Controller

$$u_2 = \arctan\left(\frac{L\cos^3\epsilon_\theta}{1-\kappa\epsilon_L}\left(2\sqrt{k_p}\tan\epsilon_\theta - \frac{k_p\epsilon_L}{1-\kappa\epsilon_L} + \frac{\kappa}{\cos^2(\epsilon_\theta)}\right)\right)^{-2}$$

with :

- κ the curvature
- L the wheel base length
- ϵ_L the lateral error
- ϵ_{θ} the angular error
- k_p the gain defining the theoretical distance of convergence of the robot to the trajectory

 $^2 {\rm Lenain}$ et al., "Robust sideslip angles observer for accurate off-road path tracking control".

Ashley Hill¹, Eric Lucet¹, & Roland Lenain² Neuroevolution for real-time gain tuning

Localisation - Extended Kalman Filter

Figure 7: The Prediction model.³

³Welch and Bishop, An Introduction to the Kalman Filter.

Ashley Hill¹, Eric Lucet¹, & Roland Lenain² Neuroevolution for real-time gain tuning

Contents

Gain adaptation

Localisation process and control

Results

- Trajectories
- Qualitative results
- Quantitative results

5 Conclusion

Trajectories - The tested trajectories

Figure 8: line, sine, and parabola trajectories, with a change lane.

Trajectories - The tested trajectories

Figure 9: spline1 and spline2 trajectories, with a change lane.

Qualitative results - Gains vs path

Figure 10: Above: the path, below: the gain

Qualitative results - Gains vs curvature

Figure 11: Above: the curvature, below: the gain

Qualitative results - Steering output

Figure 12: Above: the steering for the fixed gain, below: the steering for the proposed method

Quantitative results - Welsh t-test

trajectory	ob ₁	ob ₂	ob ₃
line	3.22e-2	1.80e-8	7.01e-5
sine	$1.61\mathrm{e}{-4}$	4.07e-9	6.06e-7
parabola	6.53e-12	4.20e-21	1.49e-17
spline1	2.09e-28	3.63e-21	5.08e-19
spline2	3.48e-1	8.42e-16	1.49e-9

Table 1: Welch test⁴ p-values between fixed gain and the suggested method, for every trajectory over the objective functions. With $k_{\text{steer}} = 0.5^{5}$.

⁵The value of k_{steer} was chosen so ob_3 would be the compromise between ob_1 and ob_2 Ashley Hill¹, Eric Lucet¹, & Roland Lenain² Neuroevolution for real-time gain tuning 30th July 2019 23 / 37

⁴Welch, "The generalization of 'student's' problem when several different population variances are involved".

Quantitative results - Objective function performance

trajectory	ob ₁	ob ₂	ob3
line	3.145%	13.69%	9.466%
sine	4.165%	4.575%	4.612%
parabola	6.787%	21.20%	17.95%
spline1	12.46%	17.16%	17.20%
spline2	4.780%	10.68%	7.569%

Table 2: The percentage improvement of the objective functions for every trajectory relative to the fixed gain. With $k_{\text{steer}} = 0.5$.

Contents

Introduction

2 Gain adaptation

Localisation process and control

Results

Conclusion

- Advantages
- Limitations
- Future works
- End of the presentation

6 Appendix

Advantages - Comparison to gain tuning methods

Advantages of this method:

- Robot independent
- Controller independent
- Minimal prior knowledge
- Optimisable for a given task
- Real time adaptation to external condition
- A 10% to 20% improvement when compared to a constant gain in the example task

Limitations

Objective function selection

- Task specific
- Avoid local optima

Systematic error due to simulation

- Real world perturbation and noise
- Model error

Training time

- CMA-ES Sample inefficient (1 year simulated time)
- 5 hours wall time with 8 CPU cores of a i7-6820HQ

No stability proof:

- NN black boxes
- Only proof of stability through gain bounds

Future works

- Multiple gains prediction
- Dynamic simulation with action delay
- Tests on real robotics

Teaser:

Thank You.

Contents

Bibliography

Hansen, Nikolaus. "The CMA Evolution Strategy: A Tutorial". In: CoRR abs/1604.00772 (2016). arXiv: 1604.00772. Hill, Ashley et al. Stable Baselines. https://github.com/hill-a/stable-baselines. 2018. Lenain, R. et al. "Robust sideslip angles observer for accurate off-road path tracking control". In: Advanced Robotics 31.9 (2017), pp. 453-467. Welch, B. L. "The generalization of 'student's' problem when several different population variances are involved". In: Biometrika 34.1-2 (Jan. 1947), pp. 28-35. ISSN: 0006-3444. DOI: 10.1093/biomet/34.1-2.28. Welch, Greg and Gary Bishop. An Introduction to the Kalman Filter. Tech. rep. Chapel Hill, NC, USA, 1995.

RL vs CMA-ES NN

trajectory	CMA-ES	SAC	PPO	DDPG	A2C	fixed gain
	NN					
line	41.60	60.99	115.11	158.14	57.52	48.20
	(± 2 .34)	(±22.21)	(± 57 . 10)	(±4.09)	(± 15.12)	(±2.45)
sine	144.76	1140.52	2403.93	309.18	280.51	151.70
	(±2.86)	(± 3004 .65)	(±2824.32)	(±5.79)	(± 175.61)	(± 2 . 83)
parabola	98.73	191.48	389.65	417.99	208.80	125.29
	(±3.39)	(± 2 . 43)	(±6.34)	(±6.23)	(± 26 . 57)	(±4.02)
spline1	117.66	508.24	2864.41	272.20	542.85	142.04
	(± 3 . 0 4)	(± 152 .24)	(±14.31)	(±5.27)	(±4.47)	(±3.45)
spline2	147.32	6563.63	3169.80	258.85	437.22	164.94
	(± 3 . 18)	(± 3310 .81)	(±23.61)	(±26.39)	(±736.97)	(±4.45)

Table 3: The values of the objective function ob_2 for every trajectory with RL methods. RL algorithms from the Stable-baselines library⁶

Ashley Hill¹, Eric Lucet¹, & Roland Lenain² Neuroevolution for real-time gain tuning

⁶Hill et al., *Stable Baselines*.

Appendix

Robot equation

$$\dot{X} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} v \cos(\theta) + \alpha_x \\ v \sin(\theta) + \alpha_y \\ v \frac{\tan(u_2 + \alpha_{u_2})}{L} + \alpha_{\theta} \\ u_1 + \alpha_{u_1} \end{pmatrix}$$

with:

- x, y The position in the global reference
- θ The direction of the robot
- v The speed of the robot
- *u*₁ The acceleration command
- *u*₂ The steering command
- α White noise

(1)

Qualitative results - Ablation

Figure 13: Above: the gain without the curvature, below: the gain without the Kalman covariance

Appendix

Qualitative results - Training over time

Figure 14: The gain over the training history

Objective function values

	ob ₁		ob ₂		ob ₃	
trajectory	CMA-ES	fixed gain	CMA-ES	fixed gain	CMA-ES	fixed gain
	NN		NN		NN	
line	27.41	28.30	41.60	48.20	36.63	40.46
	(± 1.98)	(±2.08)	(± 2 .34)	(±2.45)	(± 2.63)	(±4.65)
sine	39.81	41.54	144.76	151.70	94.11	98.66
	(±2.18)	(±2.18)	(±2.86)	(± 2.83)	(± 2 .32)	(±2.37)
parabola	64.41	69.10	98.73	125.29	83.38	101.62
	(± 2.90)	(±3.04)	(± 3 .39)	(±4.02)	(± 3 .27)	(±4.00)
spline1	52.34	59.79	117.66	142.04	87.30	105.43
	(± 2 . 14)	(±2.52)	(± 3 .04)	(±3.45)	(± 3 .07)	(±3.54)
spline2	68.33	71.76	147.32	164.94	110.03	119.04
	(± 2 .59)	(±25.26)	(± 3 . 18)	(±4.45)	(± 3 . 12)	(±3.79)

Table 4: The values of the objective functions for every trajectory. With $k_{\text{steer}} = 0.5$.

Appendix

Bi-gain

Figure 15: Above: the path, below: the gain